Quercetin Promotes the Repair of Mitochondrial Function in H9c2 Cells Through the miR-92a-3p/Mfn1 Axis


Citar

Texto integral

Resumo

Objective:Cardiocerebrovascular disease is a severe threat to human health. Quercetin has a wide range of pharmacological effects such as antitumor and antioxidant. In this study, we aimed to determine how quercetin regulates mitochondrial function in H9c2 cells.

Methods:An H9c2 cell oxygen glucose deprivation/reoxygenation (OGD/R) model was constructed. The expression of miR-92a-3p and mitofusin 1 (Mfn1) mRNA in the cells was detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Changes in the mitochondrial membrane potential of cells were examined by JC-1 staining. ATP production in the cells was detected using a biochemical assay. Mitochondrial morphological changes were observed using transmission electron microscopy. Detection of miR-92a-3p binding to Mfn1 was done using dual luciferase. Western blotting was used to detect the protein expression of Mfn1 in the cells.

Results:miR-92a-3p is essential in regulating cell viability, apoptosis, and tumor cell metastasis. OGD/R induced miR-92a-3p expression, decreased mitochondrial membrane potential and mitochondrial ATP production, and increased mitochondrial damage. Mitochondria are the most critical site for ATP production. Continued opening of the mitochondrial permeability transition pore results in an abnormal mitochondrial transmembrane potential. Both quercetin and inhibition of miR-29a-3p were able to downregulate miR-29a-3p levels, increase cell viability, mitochondrial membrane potential, and ATP levels, and improve mitochondrial damage morphology. Furthermore, we found that downregulation of miR-29a-3p upregulated the protein expression of Mfn1 in cells. Additionally, miR-92a-3p was found to bind to Mfn1 in a luciferase assay. miR- 29a-3p overexpression significantly inhibited the protein expression level of Mfn1. Quercetin treatment partially reversed the effects of miR-29a-3p overexpression in H9c2 cells.

Conclusion:Quercetin promoted the recovery of mitochondrial damage in H9c2 cells through the miR-92a-3p/Mfn1 axis.

Sobre autores

Fen Li

Department of Neurology, Wuhan Third Hospital and Tongren Hospital of Wuhan University

Email: info@benthamscience.net

Dongsheng Li

Department of Cardiology, Wuhan Third Hospital and Tongren Hospital of Wuhan University

Email: info@benthamscience.net

Xisheng Yan

Department of Cardiology, Wuhan Third Hospital and Tongren Hospital of Wuhan University

Autor responsável pela correspondência
Email: info@benthamscience.net

Fen Zhu

Department of Cardiology, Wuhan Third Hospital and Tongren Hospital of Wuhan University

Email: info@benthamscience.net

Shifan Tang

Department of Cardiology, Wuhan Third Hospital and Tongren Hospital of Wuhan University

Email: info@benthamscience.net

Jianguang Liu

Department of Neurology, Wuhan Third Hospital and Tongren Hospital of Wuhan University

Email: info@benthamscience.net

Jie Yan

Department of Forensic Science, Changsha,

Email: info@benthamscience.net

Haifeng Chen

Department of Clinical Medicine, Jianghan University

Email: info@benthamscience.net

Bibliografia

  1. Nitsa, A.; Toutouza, M.; MacHairas, N.; Mariolis, A.; Philippou, A.; Koutsilieris, M. Vitamin D in cardiovascular disease. In Vivo, 2018, 32(5), 977-981. doi: 10.21873/invivo.11338 PMID: 30150419
  2. Sunkara, A.; Raizner, A. Supplemental vitamins and minerals for cardiovascular disease prevention and treatment. Methodist DeBakey Cardiovasc. J., 2019, 15(3), 179-184. doi: 10.14797/mdcj-15-3-179 PMID: 31687096
  3. Wu, X.; Li, Y.; Zhang, S.; Zhou, X. Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics, 2021, 11(7), 3052-3059. doi: 10.7150/thno.54113 PMID: 33537073
  4. Qiu, Z.; He, Y.; Ming, H.; Lei, S.; Leng, Y.; Xia, Z. Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ros-dependent nlrp3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. J. Diabetes Res., 2019, 2019, 1-12. doi: 10.1155/2019/8151836 PMID: 30911553
  5. Gumpper-Fedus, K.; Park, K.H.; Ma, H.; Zhou, X.; Bian, Z.; Krishnamurthy, K.; Sermersheim, M.; Zhou, J.; Tan, T.; Li, L.; Liu, J.; Lin, P.H.; Zhu, H.; Ma, J. MG53 preserves mitochondrial integrity of cardiomyocytes during ischemia reperfusion-induced oxidative stress. Redox Biol., 2022, 54, 102357. doi: 10.1016/j.redox.2022.102357 PMID: 35679798
  6. Gao, J.; Zhao, L.; Wang, J.; Zhang, L.; Zhou, D.; Qu, J.; Wang, H.; Yin, M.; Hong, J.; Zhao, W. C-Phycocyanin ameliorates mitochondrial fission and fusion dynamics in ischemic cardiomyocyte damage. Front. Pharmacol., 2019, 10, 733. doi: 10.3389/fphar.2019.00733 PMID: 31316386
  7. Cai, Z.L.; Shen, B.; Yuan, Y.; Liu, C.; Xie, Q.W.; Hu, T.T.; Yao, Q.; Wu, Q.Q.; Tang, Q.Z. The effect of HMGA1 in LPS-induced Myocardial Inflammation. Int. J. Biol. Sci., 2020, 16(11), 1798-1810. doi: 10.7150/ijbs.39947 PMID: 32398950
  8. Zeng, M.; Zhang, B.; Li, B.; Kan, Y.; Wang, S.; Feng, W.; Zheng, X. Adenosine attenuates lps-induced cardiac dysfunction by inhibition of mitochondrial function via the ER pathway. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-10. doi: 10.1155/2019/1832025 PMID: 30733807
  9. Tian, L.; Cao, W.; Yue, R.; Yuan, Y.; Guo, X.; Qin, D.; Xing, J.; Wang, X. Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway. J. Pharmacol. Sci., 2019, 139(4), 352-360. doi: 10.1016/j.jphs.2019.02.008 PMID: 30910451
  10. Xu, D.; Hu, M.J.; Wang, Y.Q.; Cui, Y.L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 2019, 24(6), 1123. doi: 10.3390/molecules24061123 PMID: 30901869
  11. Reyes-Farias, M.; Carrasco-Pozo, C. The anti-cancer effect of quercetin: molecular implications in cancer metabolism. Int. J. Mol. Sci., 2019, 20(13), 3177. doi: 10.3390/ijms20133177 PMID: 31261749
  12. Cao, H.; Jia, Q.; Yan, L.; Chen, C.; Xing, S.; Shen, D. Quercetin suppresses the progression of atherosclerosis by regulating MST1-Mediated Autophagy in ox-LDL-Induced RAW264.7 macrophage foam cells. Int. J. Mol. Sci., 2019, 20(23), 6093. doi: 10.3390/ijms20236093 PMID: 31816893
  13. Chen, Y.; Zhao, Y.; Miao, C.; Yang, L.; Wang, R.; Chen, B.; Zhang, Q. Quercetin alleviates cyclophosphamide-induced premature ovarian insufficiency in mice by reducing mitochondrial oxidative stress and pyroptosis in granulosa cells. J. Ovarian Res., 2022, 15(1), 138. doi: 10.1186/s13048-022-01080-3 PMID: 36572950
  14. Qiu, L.; Luo, Y.; Chen, X. Quercetin attenuates mitochondrial dysfunction and biogenesis via upregulated AMPK/SIRT1 signaling pathway in OA rats. Biomed. Pharmacother., 2018, 103, 1585-1591. doi: 10.1016/j.biopha.2018.05.003 PMID: 29864946
  15. Li, F.; Li, D.; Tang, S.; Liu, J.; Yan, J.; Chen, H.; Yan, X. Quercetin protects H9c2 cardiomyocytes against oxygen-glucose deprivation/reoxygenation-induced oxidative stress and mitochondrial apoptosis by regulating the ERK1/2/DRP1 signaling pathway. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-10. doi: 10.1155/2021/7522175 PMID: 34457029
  16. Fridrichova, I.; Zmetakova, I. MicroRNAs contribute to breast cancer invasiveness. Cells, 2019, 8(11), 1361. doi: 10.3390/cells8111361 PMID: 31683635
  17. Zhang, J.; Xu, Y.; Liu, H.; Pan, Z. MicroRNAs in ovarian follicular atresia and granulosa cell apoptosis. Reprod. Biol. Endocrinol., 2019, 17(1), 9. doi: 10.1186/s12958-018-0450-y PMID: 30630485
  18. Zhu, X.; Lu, X. MiR‐423‐5p inhibition alleviates cardiomyocyte apoptosis and mitochondrial dysfunction caused by hypoxia/reoxygenation through activation of the wnt/β‐catenin signaling pathway via targeting MYBL2. J. Cell. Physiol., 2019, 234(12), 22034-22043. doi: 10.1002/jcp.28766 PMID: 31074036
  19. Du, J.K.; Cong, B.H.; Yu, Q.; Wang, H.; Wang, L.; Wang, C.N.; Tang, X.L.; Lu, J.Q.; Zhu, X.Y.; Ni, X. Upregulation of microRNA-22 contributes to myocardial ischemia-reperfusion injury by interfering with the mitochondrial function. Free Radic. Biol. Med., 2016, 96, 406-417. doi: 10.1016/j.freeradbiomed.2016.05.006 PMID: 27174562
  20. Xia, W.; Chen, H.; Xie, C.; Hou, M. Long-noncoding RNA MALAT1 sponges microRNA-92a-3p to inhibit doxorubicin-induced cardiac senescence by targeting ATG4a. Aging, 2020, 12(9), 8241-8260. doi: 10.18632/aging.103136 PMID: 32384281
  21. Yang, B.; Zheng, C.; Yu, H.; Zhang, R.; Zhao, C.; Cai, S. Cardio-protective effects of salvianolic acid B on oxygen and glucose deprivation (OGD)-treated H9c2 cells. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2274-2281. doi: 10.1080/21691401.2019.1621885 PMID: 31184214
  22. Chen, X.; Peng, X.; Luo, Y.; You, J.; Yin, D.; Xu, Q.; He, H.; He, M. Quercetin protects cardiomyocytes against doxorubicin-induced toxicity by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ. Toxicol. Mech. Methods, 2019, 29(5), 344-354. doi: 10.1080/15376516.2018.1564948 PMID: 30636491
  23. Rahul, V.P.; Bhupendra, M.M.; Surendra, K.S.; Riyaz, S.; Vijay, S. Shin H-S. Therapeutic potential of quercetin as a cardiovascular agent. Eur. J. Med. Chem., 2018, 15(5)
  24. Houghton, M.J.; Kerimi, A.; Tumova, S.; Boyle, J.P.; Williamson, G. Quercetin preserves redox status and stimulates mitochondrial function in metabolically-stressed HepG2 cells. Free Radic. Biol. Med., 2018, 129, 296-309. doi: 10.1016/j.freeradbiomed.2018.09.037 PMID: 30266680
  25. Vanani, A.R.; Mahdavinia, M.; Shirani, M.; Alizadeh, S.; Dehghani, M.A. Protective effects of quercetin against oxidative stress induced by bisphenol-A in rat cardiac mitochondria. Environ. Sci. Pollut. Res. Int., 2020, 27(13), 15093-15102. doi: 10.1007/s11356-020-08048-0 PMID: 32064580
  26. Zhang, Q.; Chang, B.; Zheng, G.; Du, S.; Li, X. Quercetin stimulates osteogenic differentiation of bone marrow stromal cells through miRNA-206/connexin 43 pathway. Am. J. Transl. Res., 2020, 12(5), 2062-2070. PMID: 32509200
  27. Guo, G.; Gong, L.; Sun, L.; Xu, H. RETRACTED ARTICLE: Quercetin supports cell viability and inhibits apoptosis in cardiocytes by down-regulating miR-199a. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2909-2916. doi: 10.1080/21691401.2019.1640711 PMID: 31307244
  28. Mao, Q.Q.; Chen, J.J.; Xu, W.J.; Zhao, X.Z.; Sun, X.; Zhong, L. miR-92a-3p promotes the proliferation and invasion of gastric cancer cells by targeting KLF2. J. Biol. Regul. Homeost. Agents, 2020, 34(4), 1333-1341. PMID: 32907305
  29. Norat, P.; Soldozy, S.; Sokolowski, J.D.; Gorick, C.M.; Kumar, J.S.; Chae, Y.; Yağmurlu, K.; Prada, F.; Walker, M.; Levitt, M.R.; Price, R.J.; Tvrdik, P.; Kalani, M.Y.S. Mitochondrial dysfunction in neurological disorders: Exploring mitochondrial transplantation. NPJ Regen. Med., 2020, 5(1), 22. doi: 10.1038/s41536-020-00107-x PMID: 33298971
  30. Sakamuru, S.; Zhao, J.; Attene-Ramos, M.S.; Xia, M. Mitochondrial membrane potential assay. Methods Mol. Biol., 2022, 2474, 11-19. doi: 10.1007/978-1-0716-2213-1_2 PMID: 35294751
  31. Gan, X.; Zhao, H.; Wei, Y.; Jiang, Q.; Wen, C.; Ying, Y. Role of miR-92a-3p, oxidative stress, and p38MAPK/NF-κB pathway in rats with central venous catheter related thrombosis. BMC Cardiovasc. Disord., 2020, 20(1), 150. doi: 10.1186/s12872-020-01436-x PMID: 32228467
  32. Rong, X.; Jia, L.; Hong, L.; Pan, L.; Xue, X.; Zhang, C.; Lu, J.; Jin, Z.; Qiu, H.; Wu, R.; Chu, M. Serum miR-92a-3p as a new potential biomarker for diagnosis of kawasaki disease with coronary artery lesions. J. Cardiovasc. Transl. Res., 2017, 10(1), 1-8. doi: 10.1007/s12265-016-9717-x PMID: 27981487
  33. Cheng, Y.; Zhang, D.; Zhu, M.; Wang, Y.; Guo, S.; Xu, B.; Hou, G.; Feng, Y.; Liu, G. Liver X receptor α is targeted by microRNA-1 to inhibit cardiomyocyte apoptosis through a ROS-mediated mitochondrial pathway. Biochem. Cell Biol., 2018, 96(1), 11-18. doi: 10.1139/bcb-2017-0154 PMID: 29024600
  34. Gao, S.; Hu, J. Mitochondrial Fusion: The machineries in and out. Trends Cell Biol., 2021, 31(1), 62-74. doi: 10.1016/j.tcb.2020.09.008 PMID: 33092941
  35. Chen, H.; Detmer, S.A.; Ewald, A.J.; Griffin, E.E.; Fraser, S.E.; Chan, D.C. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol., 2003, 160(2), 189-200. doi: 10.1083/jcb.200211046 PMID: 12527753
  36. Adebayo, M.; Singh, S.; Singh, A.P.; Dasgupta, S. Mitochondrial fusion and fission: The fine‐tune balance for cellular homeostasis. FASEB J., 2021, 35(6), e21620. doi: 10.1096/fj.202100067R PMID: 34048084
  37. Tan, K.Y.; Li, C.Y.; Li, Y.F.; Fei, J.; Yang, B.; Fu, Y.J.; Li, F. Real-time monitoring ATP in mitochondrion of living cells: A specific fluorescent probe for ATP by dual recognition sites. Anal. Chem., 2017, 89(3), 1749-1756. doi: 10.1021/acs.analchem.6b04020 PMID: 28208302
  38. Suzuki, R.; Hotta, K.; Oka, K. Transitional correlation between inner-membrane potential and ATP levels of neuronal mitochondria. Sci. Rep., 2018, 8(1), 2993. doi: 10.1038/s41598-018-21109-2 PMID: 29445117

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024