Quercetin Promotes the Repair of Mitochondrial Function in H9c2 Cells Through the miR-92a-3p/Mfn1 Axis
- Autores: Li F.1, Li D.2, Yan X.2, Zhu F.2, Tang S.2, Liu J.1, Yan J.3, Chen H.4
-
Afiliações:
- Department of Neurology, Wuhan Third Hospital and Tongren Hospital of Wuhan University
- Department of Cardiology, Wuhan Third Hospital and Tongren Hospital of Wuhan University
- Department of Forensic Science, Changsha,
- Department of Clinical Medicine, Jianghan University
- Edição: Volume 25, Nº 14 (2024)
- Páginas: 1858-1866
- Seção: Biotechnology
- URL: https://ruspoj.com/1389-2010/article/view/644578
- DOI: https://doi.org/10.2174/0113892010266863231030052150
- ID: 644578
Citar
Texto integral
Resumo
Objective:Cardiocerebrovascular disease is a severe threat to human health. Quercetin has a wide range of pharmacological effects such as antitumor and antioxidant. In this study, we aimed to determine how quercetin regulates mitochondrial function in H9c2 cells.
Methods:An H9c2 cell oxygen glucose deprivation/reoxygenation (OGD/R) model was constructed. The expression of miR-92a-3p and mitofusin 1 (Mfn1) mRNA in the cells was detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Changes in the mitochondrial membrane potential of cells were examined by JC-1 staining. ATP production in the cells was detected using a biochemical assay. Mitochondrial morphological changes were observed using transmission electron microscopy. Detection of miR-92a-3p binding to Mfn1 was done using dual luciferase. Western blotting was used to detect the protein expression of Mfn1 in the cells.
Results:miR-92a-3p is essential in regulating cell viability, apoptosis, and tumor cell metastasis. OGD/R induced miR-92a-3p expression, decreased mitochondrial membrane potential and mitochondrial ATP production, and increased mitochondrial damage. Mitochondria are the most critical site for ATP production. Continued opening of the mitochondrial permeability transition pore results in an abnormal mitochondrial transmembrane potential. Both quercetin and inhibition of miR-29a-3p were able to downregulate miR-29a-3p levels, increase cell viability, mitochondrial membrane potential, and ATP levels, and improve mitochondrial damage morphology. Furthermore, we found that downregulation of miR-29a-3p upregulated the protein expression of Mfn1 in cells. Additionally, miR-92a-3p was found to bind to Mfn1 in a luciferase assay. miR- 29a-3p overexpression significantly inhibited the protein expression level of Mfn1. Quercetin treatment partially reversed the effects of miR-29a-3p overexpression in H9c2 cells.
Conclusion:Quercetin promoted the recovery of mitochondrial damage in H9c2 cells through the miR-92a-3p/Mfn1 axis.
Sobre autores
Fen Li
Department of Neurology, Wuhan Third Hospital and Tongren Hospital of Wuhan University
Email: info@benthamscience.net
Dongsheng Li
Department of Cardiology, Wuhan Third Hospital and Tongren Hospital of Wuhan University
Email: info@benthamscience.net
Xisheng Yan
Department of Cardiology, Wuhan Third Hospital and Tongren Hospital of Wuhan University
Autor responsável pela correspondência
Email: info@benthamscience.net
Fen Zhu
Department of Cardiology, Wuhan Third Hospital and Tongren Hospital of Wuhan University
Email: info@benthamscience.net
Shifan Tang
Department of Cardiology, Wuhan Third Hospital and Tongren Hospital of Wuhan University
Email: info@benthamscience.net
Jianguang Liu
Department of Neurology, Wuhan Third Hospital and Tongren Hospital of Wuhan University
Email: info@benthamscience.net
Jie Yan
Department of Forensic Science, Changsha,
Email: info@benthamscience.net
Haifeng Chen
Department of Clinical Medicine, Jianghan University
Email: info@benthamscience.net
Bibliografia
- Nitsa, A.; Toutouza, M.; MacHairas, N.; Mariolis, A.; Philippou, A.; Koutsilieris, M. Vitamin D in cardiovascular disease. In Vivo, 2018, 32(5), 977-981. doi: 10.21873/invivo.11338 PMID: 30150419
- Sunkara, A.; Raizner, A. Supplemental vitamins and minerals for cardiovascular disease prevention and treatment. Methodist DeBakey Cardiovasc. J., 2019, 15(3), 179-184. doi: 10.14797/mdcj-15-3-179 PMID: 31687096
- Wu, X.; Li, Y.; Zhang, S.; Zhou, X. Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics, 2021, 11(7), 3052-3059. doi: 10.7150/thno.54113 PMID: 33537073
- Qiu, Z.; He, Y.; Ming, H.; Lei, S.; Leng, Y.; Xia, Z. Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ros-dependent nlrp3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. J. Diabetes Res., 2019, 2019, 1-12. doi: 10.1155/2019/8151836 PMID: 30911553
- Gumpper-Fedus, K.; Park, K.H.; Ma, H.; Zhou, X.; Bian, Z.; Krishnamurthy, K.; Sermersheim, M.; Zhou, J.; Tan, T.; Li, L.; Liu, J.; Lin, P.H.; Zhu, H.; Ma, J. MG53 preserves mitochondrial integrity of cardiomyocytes during ischemia reperfusion-induced oxidative stress. Redox Biol., 2022, 54, 102357. doi: 10.1016/j.redox.2022.102357 PMID: 35679798
- Gao, J.; Zhao, L.; Wang, J.; Zhang, L.; Zhou, D.; Qu, J.; Wang, H.; Yin, M.; Hong, J.; Zhao, W. C-Phycocyanin ameliorates mitochondrial fission and fusion dynamics in ischemic cardiomyocyte damage. Front. Pharmacol., 2019, 10, 733. doi: 10.3389/fphar.2019.00733 PMID: 31316386
- Cai, Z.L.; Shen, B.; Yuan, Y.; Liu, C.; Xie, Q.W.; Hu, T.T.; Yao, Q.; Wu, Q.Q.; Tang, Q.Z. The effect of HMGA1 in LPS-induced Myocardial Inflammation. Int. J. Biol. Sci., 2020, 16(11), 1798-1810. doi: 10.7150/ijbs.39947 PMID: 32398950
- Zeng, M.; Zhang, B.; Li, B.; Kan, Y.; Wang, S.; Feng, W.; Zheng, X. Adenosine attenuates lps-induced cardiac dysfunction by inhibition of mitochondrial function via the ER pathway. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-10. doi: 10.1155/2019/1832025 PMID: 30733807
- Tian, L.; Cao, W.; Yue, R.; Yuan, Y.; Guo, X.; Qin, D.; Xing, J.; Wang, X. Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway. J. Pharmacol. Sci., 2019, 139(4), 352-360. doi: 10.1016/j.jphs.2019.02.008 PMID: 30910451
- Xu, D.; Hu, M.J.; Wang, Y.Q.; Cui, Y.L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 2019, 24(6), 1123. doi: 10.3390/molecules24061123 PMID: 30901869
- Reyes-Farias, M.; Carrasco-Pozo, C. The anti-cancer effect of quercetin: molecular implications in cancer metabolism. Int. J. Mol. Sci., 2019, 20(13), 3177. doi: 10.3390/ijms20133177 PMID: 31261749
- Cao, H.; Jia, Q.; Yan, L.; Chen, C.; Xing, S.; Shen, D. Quercetin suppresses the progression of atherosclerosis by regulating MST1-Mediated Autophagy in ox-LDL-Induced RAW264.7 macrophage foam cells. Int. J. Mol. Sci., 2019, 20(23), 6093. doi: 10.3390/ijms20236093 PMID: 31816893
- Chen, Y.; Zhao, Y.; Miao, C.; Yang, L.; Wang, R.; Chen, B.; Zhang, Q. Quercetin alleviates cyclophosphamide-induced premature ovarian insufficiency in mice by reducing mitochondrial oxidative stress and pyroptosis in granulosa cells. J. Ovarian Res., 2022, 15(1), 138. doi: 10.1186/s13048-022-01080-3 PMID: 36572950
- Qiu, L.; Luo, Y.; Chen, X. Quercetin attenuates mitochondrial dysfunction and biogenesis via upregulated AMPK/SIRT1 signaling pathway in OA rats. Biomed. Pharmacother., 2018, 103, 1585-1591. doi: 10.1016/j.biopha.2018.05.003 PMID: 29864946
- Li, F.; Li, D.; Tang, S.; Liu, J.; Yan, J.; Chen, H.; Yan, X. Quercetin protects H9c2 cardiomyocytes against oxygen-glucose deprivation/reoxygenation-induced oxidative stress and mitochondrial apoptosis by regulating the ERK1/2/DRP1 signaling pathway. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-10. doi: 10.1155/2021/7522175 PMID: 34457029
- Fridrichova, I.; Zmetakova, I. MicroRNAs contribute to breast cancer invasiveness. Cells, 2019, 8(11), 1361. doi: 10.3390/cells8111361 PMID: 31683635
- Zhang, J.; Xu, Y.; Liu, H.; Pan, Z. MicroRNAs in ovarian follicular atresia and granulosa cell apoptosis. Reprod. Biol. Endocrinol., 2019, 17(1), 9. doi: 10.1186/s12958-018-0450-y PMID: 30630485
- Zhu, X.; Lu, X. MiR‐423‐5p inhibition alleviates cardiomyocyte apoptosis and mitochondrial dysfunction caused by hypoxia/reoxygenation through activation of the wnt/β‐catenin signaling pathway via targeting MYBL2. J. Cell. Physiol., 2019, 234(12), 22034-22043. doi: 10.1002/jcp.28766 PMID: 31074036
- Du, J.K.; Cong, B.H.; Yu, Q.; Wang, H.; Wang, L.; Wang, C.N.; Tang, X.L.; Lu, J.Q.; Zhu, X.Y.; Ni, X. Upregulation of microRNA-22 contributes to myocardial ischemia-reperfusion injury by interfering with the mitochondrial function. Free Radic. Biol. Med., 2016, 96, 406-417. doi: 10.1016/j.freeradbiomed.2016.05.006 PMID: 27174562
- Xia, W.; Chen, H.; Xie, C.; Hou, M. Long-noncoding RNA MALAT1 sponges microRNA-92a-3p to inhibit doxorubicin-induced cardiac senescence by targeting ATG4a. Aging, 2020, 12(9), 8241-8260. doi: 10.18632/aging.103136 PMID: 32384281
- Yang, B.; Zheng, C.; Yu, H.; Zhang, R.; Zhao, C.; Cai, S. Cardio-protective effects of salvianolic acid B on oxygen and glucose deprivation (OGD)-treated H9c2 cells. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2274-2281. doi: 10.1080/21691401.2019.1621885 PMID: 31184214
- Chen, X.; Peng, X.; Luo, Y.; You, J.; Yin, D.; Xu, Q.; He, H.; He, M. Quercetin protects cardiomyocytes against doxorubicin-induced toxicity by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ. Toxicol. Mech. Methods, 2019, 29(5), 344-354. doi: 10.1080/15376516.2018.1564948 PMID: 30636491
- Rahul, V.P.; Bhupendra, M.M.; Surendra, K.S.; Riyaz, S.; Vijay, S. Shin H-S. Therapeutic potential of quercetin as a cardiovascular agent. Eur. J. Med. Chem., 2018, 15(5)
- Houghton, M.J.; Kerimi, A.; Tumova, S.; Boyle, J.P.; Williamson, G. Quercetin preserves redox status and stimulates mitochondrial function in metabolically-stressed HepG2 cells. Free Radic. Biol. Med., 2018, 129, 296-309. doi: 10.1016/j.freeradbiomed.2018.09.037 PMID: 30266680
- Vanani, A.R.; Mahdavinia, M.; Shirani, M.; Alizadeh, S.; Dehghani, M.A. Protective effects of quercetin against oxidative stress induced by bisphenol-A in rat cardiac mitochondria. Environ. Sci. Pollut. Res. Int., 2020, 27(13), 15093-15102. doi: 10.1007/s11356-020-08048-0 PMID: 32064580
- Zhang, Q.; Chang, B.; Zheng, G.; Du, S.; Li, X. Quercetin stimulates osteogenic differentiation of bone marrow stromal cells through miRNA-206/connexin 43 pathway. Am. J. Transl. Res., 2020, 12(5), 2062-2070. PMID: 32509200
- Guo, G.; Gong, L.; Sun, L.; Xu, H. RETRACTED ARTICLE: Quercetin supports cell viability and inhibits apoptosis in cardiocytes by down-regulating miR-199a. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2909-2916. doi: 10.1080/21691401.2019.1640711 PMID: 31307244
- Mao, Q.Q.; Chen, J.J.; Xu, W.J.; Zhao, X.Z.; Sun, X.; Zhong, L. miR-92a-3p promotes the proliferation and invasion of gastric cancer cells by targeting KLF2. J. Biol. Regul. Homeost. Agents, 2020, 34(4), 1333-1341. PMID: 32907305
- Norat, P.; Soldozy, S.; Sokolowski, J.D.; Gorick, C.M.; Kumar, J.S.; Chae, Y.; Yağmurlu, K.; Prada, F.; Walker, M.; Levitt, M.R.; Price, R.J.; Tvrdik, P.; Kalani, M.Y.S. Mitochondrial dysfunction in neurological disorders: Exploring mitochondrial transplantation. NPJ Regen. Med., 2020, 5(1), 22. doi: 10.1038/s41536-020-00107-x PMID: 33298971
- Sakamuru, S.; Zhao, J.; Attene-Ramos, M.S.; Xia, M. Mitochondrial membrane potential assay. Methods Mol. Biol., 2022, 2474, 11-19. doi: 10.1007/978-1-0716-2213-1_2 PMID: 35294751
- Gan, X.; Zhao, H.; Wei, Y.; Jiang, Q.; Wen, C.; Ying, Y. Role of miR-92a-3p, oxidative stress, and p38MAPK/NF-κB pathway in rats with central venous catheter related thrombosis. BMC Cardiovasc. Disord., 2020, 20(1), 150. doi: 10.1186/s12872-020-01436-x PMID: 32228467
- Rong, X.; Jia, L.; Hong, L.; Pan, L.; Xue, X.; Zhang, C.; Lu, J.; Jin, Z.; Qiu, H.; Wu, R.; Chu, M. Serum miR-92a-3p as a new potential biomarker for diagnosis of kawasaki disease with coronary artery lesions. J. Cardiovasc. Transl. Res., 2017, 10(1), 1-8. doi: 10.1007/s12265-016-9717-x PMID: 27981487
- Cheng, Y.; Zhang, D.; Zhu, M.; Wang, Y.; Guo, S.; Xu, B.; Hou, G.; Feng, Y.; Liu, G. Liver X receptor α is targeted by microRNA-1 to inhibit cardiomyocyte apoptosis through a ROS-mediated mitochondrial pathway. Biochem. Cell Biol., 2018, 96(1), 11-18. doi: 10.1139/bcb-2017-0154 PMID: 29024600
- Gao, S.; Hu, J. Mitochondrial Fusion: The machineries in and out. Trends Cell Biol., 2021, 31(1), 62-74. doi: 10.1016/j.tcb.2020.09.008 PMID: 33092941
- Chen, H.; Detmer, S.A.; Ewald, A.J.; Griffin, E.E.; Fraser, S.E.; Chan, D.C. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol., 2003, 160(2), 189-200. doi: 10.1083/jcb.200211046 PMID: 12527753
- Adebayo, M.; Singh, S.; Singh, A.P.; Dasgupta, S. Mitochondrial fusion and fission: The fine‐tune balance for cellular homeostasis. FASEB J., 2021, 35(6), e21620. doi: 10.1096/fj.202100067R PMID: 34048084
- Tan, K.Y.; Li, C.Y.; Li, Y.F.; Fei, J.; Yang, B.; Fu, Y.J.; Li, F. Real-time monitoring ATP in mitochondrion of living cells: A specific fluorescent probe for ATP by dual recognition sites. Anal. Chem., 2017, 89(3), 1749-1756. doi: 10.1021/acs.analchem.6b04020 PMID: 28208302
- Suzuki, R.; Hotta, K.; Oka, K. Transitional correlation between inner-membrane potential and ATP levels of neuronal mitochondria. Sci. Rep., 2018, 8(1), 2993. doi: 10.1038/s41598-018-21109-2 PMID: 29445117
Arquivos suplementares
