Inhibition of Xanthine Oxidase by 4-nitrocinnamic Acid: In Vitro and In Vivo Investigations and Docking Simulations
- Авторлар: Chen J.1, Yu S.1, He Z.1, Zhu D.1, Cai X.1, Ruan Z.1, Jin N.1
-
Мекемелер:
- School of Pharmacy and Medical technology, Putian University
- Шығарылым: Том 25, № 4 (2024)
- Беттер: 477-487
- Бөлім: Biotechnology
- URL: https://ruspoj.com/1389-2010/article/view/644814
- DOI: https://doi.org/10.2174/1389201024666230621141014
- ID: 644814
Дәйексөз келтіру
Толық мәтін
Аннотация
Background:Cinnamic acid and its derivatives have gained significant attention in recent medicinal research due to their broad spectrum of pharmacological properties. However, the effects of these compounds on xanthine oxidase (XO) have not been systematically investigated, and the inhibitory mechanism remains unclear.
Objective:The objective of this study was to screen 18 compounds and identify the XO inhibitor with the strongest inhibitory effect. Furthermore, we aimed to study the inhibitory mechanism of the identified compound.
Methods:The effects of the inhibitors on XO were evaluated using kinetic analysis, docking simulations, and in vivo study. Among the compounds tested, 4-NA was discovered as the first XO inhibitor and exhibited the most potent inhibitory effects, with an IC50 value of 23.02 ± 0.12 µmol/L. The presence of the nitro group in 4-NA was found to be essential for enhancing XO inhibition. The kinetic study revealed that 4-NA inhibited XO in a reversible and noncompetitive manner. Moreover, fluorescence spectra analysis demonstrated that 4-NA could spontaneously form complexes with XO, referred to as 4-NA‒XO complexes, with the negative values of △H and △S.
Results:This suggests that hydrogen bonds and van der Waals forces play crucial roles in the binding process. Molecular docking studies further supported the kinetic analysis and provided insight into the optimal binding conformation, indicating that 4-NA is located at the bottom outside the catalytic center through the formation of three hydrogen bonds. Furthermore, animal studies confirmed that the inhibitory effects of 4-NA on XO resulted in a significant reduction of serum uric acid level in hyperuricemia mice.
Conclusion:This work elucidates the mechanism of 4-NA inhibiting XO, paving the way for the development of new XO inhibitors.
Негізгі сөздер
Авторлар туралы
Jianmin Chen
School of Pharmacy and Medical technology, Putian University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Sijin Yu
School of Pharmacy and Medical technology, Putian University
Email: info@benthamscience.net
Zemin He
School of Pharmacy and Medical technology, Putian University
Email: info@benthamscience.net
Danhong Zhu
School of Pharmacy and Medical technology, Putian University
Email: info@benthamscience.net
Xiaozhen Cai
School of Pharmacy and Medical technology, Putian University
Email: info@benthamscience.net
Zhipeng Ruan
School of Pharmacy and Medical technology, Putian University
Email: info@benthamscience.net
Nan Jin
School of Pharmacy and Medical technology, Putian University
Email: info@benthamscience.net
Әдебиет тізімі
- Abooali, M.; Lall, G.S.; Coughlan, K.; Lall, H.S.; Gibbs, B.F.; Sumbayev, V.V. Crucial involvement of xanthine oxidase in the intracellular signalling networks associated with human myeloid cell function. Sci. Rep., 2014, 4(1), 6307. doi: 10.1038/srep06307 PMID: 25200751
- Chen, J.; Li, Q.; Ye, Y.; Ran, M.; Ruan, Z.; Jin, N. Inhibition of xanthine oxidase by theaflavin: Possible mechanism for anti-hyperuricaemia effect in mice. Process Biochem., 2020, 97, 11-18. doi: 10.1016/j.procbio.2020.06.024
- Kumar, D.; Kaur, G.; Negi, A.; Kumar, S.; Singh, S.; Kumar, R. Synthesis and xanthine oxidase inhibitory activity of 5,6-dihydropyrazolo/pyrazolo1,5-cquinazoline derivatives. Bioorg. Chem., 2014, 57, 57-64. doi: 10.1016/j.bioorg.2014.08.007 PMID: 25222504
- Cheng, J.H.; Huang, A.M.; Hour, T.C.; Yang, S.C.; Pu, Y.S.; Lin, C.N. Antioxidant xanthone derivatives induce cell cycle arrest and apoptosis and enhance cell death induced by cisplatin in NTUB1 cells associated with ROS. Eur. J. Med. Chem., 2011, 46(4), 1222-1231. doi: 10.1016/j.ejmech.2011.01.043 PMID: 21345544
- Fais, A.; Era, B.; Asthana, S.; Sogos, V.; Medda, R.; Santana, L.; Uriarte, E.; Matos, M.J.; Delogu, F.; Kumar, A. Coumarin derivatives as promising xanthine oxidase inhibitors. Int. J. Biol. Macromol., 2018, 120(Pt A), 1286-1293. doi: 10.1016/j.ijbiomac.2018.09.001 PMID: 30189275
- Zhang, C.; Wang, R.; Zhang, G.; Gong, D. Mechanistic insights into the inhibition of quercetin on xanthine oxidase. Int. J. Biol. Macromol., 2018, 112, 405-412. doi: 10.1016/j.ijbiomac.2018.01.190 PMID: 29410028
- Gunia-Krzyżak, A.; Słoczyńska, K.; Popiół, J.; Koczurkiewicz, P.; Marona, H.; Pękala, E. Cinnamic acid derivatives in cosmetics: current use and future prospects. Int. J. Cosmet. Sci., 2018, 40(4), 356-366. doi: 10.1111/ics.12471 PMID: 29870052
- Sova, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev. Med. Chem., 2012, 12(8), 749-767. doi: 10.2174/138955712801264792 PMID: 22512578
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci., 2020, 21(16), 5712. doi: 10.3390/ijms21165712 PMID: 32784935
- Zang, L.Y.; Cosma, G.; Gardner, H.; Shi, X.; Castranova, V.; Vallyathan, V. Effect of antioxidant protection by p -coumaric acid on low-density lipoprotein cholesterol oxidation. Am. J. Physiol. Cell Physiol., 2000, 279(4), C954-C960. doi: 10.1152/ajpcell.2000.279.4.C954 PMID: 11003575
- Pontiki, E.; Hadjipavlou-Litina, D.; Geromichalos, G.; Papageorgiou, A. Anticancer activity and quantitative-structure activity relationship (QSAR) studies of a series of antioxidant/anti-inflammatory aryl-acetic and hydroxamic acids. Chem. Biol. Drug Des., 2009, 74(3), 266-275. doi: 10.1111/j.1747-0285.2009.00864.x PMID: 19703028
- Bisogno, F.; Mascoti, L.; Sanchez, C.; Garibotto, F.; Giannini, F.; Kurina-Sanz, M.; Enriz, R. Structure-antifungal activity relationship of cinnamic acid derivatives. J. Agric. Food Chem., 2007, 55(26), 10635-10640. doi: 10.1021/jf0729098 PMID: 18038998
- Naz, S.; Ahmad, S.; Ajaz Rasool, S.; Asad Sayeed, S.; Siddiqi, R. Antibacterial activity directed isolation of compounds from Onosma hispidum. Microbiol. Res., 2006, 161(1), 43-48. doi: 10.1016/j.micres.2005.05.001 PMID: 16338589
- Pontiki, E.; Hadjipavlou-Litina, D.; Litinas, K.; Geromichalos, G. Novel cinnamic acid derivatives as antioxidant and anticancer agents: design, synthesis and modeling studies. Molecules, 2014, 19(7), 9655-9674. doi: 10.3390/molecules19079655 PMID: 25004073
- Prakash, S.; Maji, D.; Samanta, S.; Sinha, R. Design, synthesis and antidiabetic, cardiomyopathy studies of cinnamic acid-amino acid hybrid analogs. Med. Chem., 2014, 4(2), 345-350.
- Chen, J.; Ran, M.; Wang, M.; Liu, X.; Liu, S.; Yu, Y. Structureactivity relationships of antityrosinase and antioxidant activities of cinnamic acid and its derivatives. Biosci. Biotechnol. Biochem., 2021, 85(7), 1697-1705. doi: 10.1093/bbb/zbab084 PMID: 33974002
- Mnafgui, K.; Derbali, A.; Sayadi, S.; Gharsallah, N.; Elfeki, A.; Allouche, N. Anti-obesity and cardioprotective effects of cinnamic acid in high fat diet- induced obese rats. J. Food Sci. Technol., 2015, 52(7), 4369-4377. doi: 10.1007/s13197-014-1488-2 PMID: 26139902
- Szwajgier, D.; Borowiec, K.; Pustelniak, K. The neuroprotective effects of phenolic acids: molecular mechanism of action. Nutrients, 2017, 9(5), 477. doi: 10.3390/nu9050477 PMID: 28489058
- Lee, E.J.; Kim, S.R.; Kim, J.; Kim, Y.C. Hepatoprotective phenylpropanoids from Scrophularia buergeriana roots against CCl(4)-induced toxicity: action mechanism and structure-activity relationship. Planta Med., 2002, 68(5), 407-411. doi: 10.1055/s-2002-32081 PMID: 12058315
- Ngoc, T.M.; Khoi, N.M.; Ha, D.T.; Nhiem, N.X.; Tai, B.H.; Don, D.V.; Luong, H.V.; Son, D.C.; Bae, K. Xanthine oxidase inhibitory activity of constituents of Cinnamomum cassia twigs. Bioorg. Med. Chem. Lett., 2012, 22(14), 4625-4628. doi: 10.1016/j.bmcl.2012.05.051 PMID: 22677314
- Nguyen, M.T.; Awale, S.; Tezuka, Y.; Ueda, J.; Tran, Q.L.; Kadota, S. Xanthine oxidase inhibitors from the flowers of Chrysanthemum sinense. Planta Med., 2006, 72(1), 46-51. doi: 10.1055/s-2005-873181 PMID: 16450295
- Chang, Y.C.; Lee, F.W.; Chen, C.S.; Huang, S.T.; Tsai, S.H.; Huang, S.H.; Lin, C.M. Structure-activity relationship of C6-C3 phenylpropanoids on xanthine oxidase-inhibiting and free radical-scavenging activities. Free Radic. Biol. Med., 2007, 43(11), 1541-1551. doi: 10.1016/j.freeradbiomed.2007.08.018 PMID: 17964425
- Wan, Y.; Wang, F.; Zou, B.; Shen, Y.; Li, Y.; Zhang, A.; Fu, G. Molecular mechanism underlying the ability of caffeic acid to decrease uric acid levels in hyperuricemia rats. J. Funct. Foods, 2019, 57, 150-156. doi: 10.1016/j.jff.2019.03.038
- Wang, Y.; Zhang, G.; Pan, J.; Gong, D. Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase. J. Agric. Food Chem., 2015, 63(2), 526-534. doi: 10.1021/jf505584m PMID: 25539132
- Enroth, C.; Eger, B.T.; Okamoto, K.; Nishino, T.; Nishino, T.; Pai, E.F. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: Structure-based mechanism of conversion. Proc. Natl. Acad. Sci. USA, 2000, 97(20), 10723-10728. doi: 10.1073/pnas.97.20.10723 PMID: 11005854
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel., 1995, 8(2), 127-134. doi: 10.1093/protein/8.2.127 PMID: 7630882
- Wang, S.Y.; Yang, C.W.; Liao, J.W.; Zhen, W.W.; Chu, F.H.; Chang, S.T. Essential oil from leaves of Cinnamomum osmophloeum acts as a xanthine oxidase inhibitor and reduces the serum uric acid levels in oxonate-induced mice. Phytomedicine, 2008, 15(11), 940-945. doi: 10.1016/j.phymed.2008.06.002
- Carroll, J.J.; Coburn, H.; Douglass, R.; Babson, A.L. A simplified alkaline phosphotungstate assay for uric acid in serum. Clin. Chem., 1971, 17(3), 158-160. doi: 10.1093/clinchem/17.3.158 PMID: 5543187
- Singh, H.; Sharma, S.; Ojha, R.; Gupta, M.K.; Nepali, K.; Bedi, P.M.S. Synthesis and evaluation of naphthoflavones as a new class of non purine xanthine oxidase inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(17), 4192-4197. doi: 10.1016/j.bmcl.2014.07.041 PMID: 25106887
- Wang, Z.J.; Lee, J.; Si, Y.X.; Oh, S.; Yang, J.M.; Shen, D.; Qian, G.Y.; Yin, S.J. Toward the inhibitory effect of acetylsalicylic acid on tyrosinase: Integrating kinetics studies and computational simulations. Process Biochem., 2013, 48(2), 260-266. doi: 10.1016/j.procbio.2012.12.019
- Nguyen, M.T.T.; Awale, S.; Tezuka, Y.; Tran, Q.L.; Kadota, S. Xanthine oxidase inhibitors from the heartwood of Vietnamese Caesalpinia sappan. Chem. Pharm. Bull., 2005, 53(8), 984-988. doi: 10.1248/cpb.53.984 PMID: 16079532
- Fan, Q.; Jiang, H.; Yuan, E.; Zhang, J.; Ning, Z.; Qi, S.; Wei, Q. Tyrosinase inhibitory effects and antioxidative activities of novel cinnamoyl amides with amino acid ester moiety. Food Chem., 2012, 134(2), 1081-1087. doi: 10.1016/j.foodchem.2012.03.021 PMID: 23107731
- Sheng, Z.; Ge, S.; Xu, X.; Zhang, Y.; Wu, P.; Zhang, K.; Xu, X.; Li, C.; Zhao, D.; Tang, X. Design, synthesis and evaluation of cinnamic acid ester derivatives as mushroom tyrosinase inhibitors. MedChemComm, 2018, 9(5), 853-861. doi: 10.1039/C8MD00099A PMID: 30108974
- Gou, L.; Lee, J.; Yang, J.M.; Park, Y.D.; Zhou, H.M.; Zhan, Y.; Lü, Z.R. Inhibition of tyrosinase by fumaric acid: Integration of inhibition kinetics with computational docking simulations. Int. J. Biol. Macromol., 2017, 105(Pt 3), 1663-1669. doi: 10.1016/j.ijbiomac.2016.12.013 PMID: 27940340
- Arancibia-Avila, P.; Toledo, F.; Werner, E.; Suhaj, M.; Leontowicz, H.; Leontowicz, M.; Martinez-Ayala, A.L. Paśko, P.; Gorinstein, S. Partial characterization of a new kind of Chilean Murtilla-like berries. Food Res. Int., 2011, 44(7), 2054-2062. doi: 10.1016/j.foodres.2011.01.016
- Dong, Y.; Huang, H.; Zhao, M.; Sun-Waterhouse, D.; Lin, L.; Xiao, C. Mechanisms underlying the xanthine oxidase inhibitory effects of dietary flavonoids galangin and pinobanksin. J. Funct. Foods, 2016, 24, 26-36. doi: 10.1016/j.jff.2016.03.021
- Yan, J.; Zhang, G.; Hu, Y.; Ma, Y. Effect of luteolin on xanthine oxidase: Inhibition kinetics and interaction mechanism merging with docking simulation. Food Chem., 2013, 141(4), 3766-3773. doi: 10.1016/j.foodchem.2013.06.092 PMID: 23993547
- Zhao, J.; Huang, L.; Sun, C.; Zhao, D.; Tang, H. Studies on the structure-activity relationship and interaction mechanism of flavonoids and xanthine oxidase through enzyme kinetics, spectroscopy methods and molecular simulations. Food Chem., 2020, 323, 126807. doi: 10.1016/j.foodchem.2020.126807 PMID: 32330646
- Abou-Zied, O.K.; Al-Shihi, O.I.K. Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. J. Am. Chem. Soc., 2008, 130(32), 10793-10801. doi: 10.1021/ja8031289 PMID: 18642807
- Wang, Y.; Zhang, G.; Yan, J.; Gong, D. Inhibitory effect of morin on tyrosinase: Insights from spectroscopic and molecular docking studies. Food Chem., 2014, 163, 226-233. doi: 10.1016/j.foodchem.2014.04.106 PMID: 24912720
- Shaikh, S.M.T.; Seetharamappa, J.; Kandagal, P.B.; Ashoka, S. Binding of the bioactive component isothipendyl hydrochloride with bovine serum albumin. J. Mol. Struct., 2006, 786(1), 46-52. doi: 10.1016/j.molstruc.2005.10.021
- Rasoulzadeh, F.; Jabary, H.N.; Naseri, A.; Rashidi, M.R. Fluorescence quenching study of quercetin interaction with bovine milk xanthine oxidase. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 72(1), 190-193. doi: 10.1016/j.saa.2008.09.021 PMID: 19028136
- Cao, W.; Fang, Y.; Wu, T.; Liang, F.; Cheng, Y.; Salah, M.; Pan, S.; Xu, X. Insights from multispectral and molecular docking investigation on the xanthine oxidase inhibition by 1,4-dicaffeoylquinic acid. J. Mol. Struct., 2020, 1219, 128475. doi: 10.1016/j.molstruc.2020.128475
- Ross, P.D.; Subramanian, S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry, 1981, 20(11), 3096-3102. doi: 10.1021/bi00514a017 PMID: 7248271
- Zhang, Q.; Xie, J.; Li, G.; Wang, F.; Lin, J.; Yang, M.; Du, A.; Zhang, D.; Han, L. Psoriasis treatment using Indigo Naturalis: Progress and strategy. J. Ethnopharmacol., 2022, 297, 115522. doi: 10.1016/j.jep.2022.115522 PMID: 35872288
- Jayaraj, P.; Mathew, B.; Parimaladevi, B.; Ramani, V.A.; Govindarajan, R. Isolation of a bioactive flavonoid from Spilanthes calva D.C. in vitro xanthine oxidase assay and in silico study. Biomedicine & Preventive Nutrition, 2014, 4(4), 481-484. doi: 10.1016/j.bionut.2014.07.005
- Ou, R.; Lin, L.; Zhao, M.; Xie, Z. Action mechanisms and interaction of two key xanthine oxidase inhibitors in galangal: Combination of in vitro and in silico molecular docking studies. Int. J. Biol. Macromol., 2020, 162, 1526-1535. doi: 10.1016/j.ijbiomac.2020.07.297 PMID: 32777423
- Thakur, M.; Thakur, A.; Balasubramanian, K. QSAR and SAR studies on the reduction of some aromatic nitro compounds by xanthine oxidase. J. Chem. Inf. Model., 2006, 46(1), 103-110. doi: 10.1021/ci050478s PMID: 16426045
- Tatsumi, K.; Kitamura, S.; Yoshimura, H.; Kawazoe, Y. Susceptibility of aromatic nitro compounds to xanthine oxidase-catalyzed reduction. Chem. Pharm. Bull. (Tokyo), 1978, 26(6), 1713-1717. doi: 10.1248/cpb.26.1713 PMID: 568038
- Kong, L.D.; Yang, C.; Ge, F.; Wang, H.D.; Guo, Y.S. A Chinese herbal medicine Ermiao wan reduces serum uric acid level and inhibits liver xanthine dehydrogenase and xanthine oxidase in mice. J. Ethnopharmacol., 2004, 93(2-3), 325-330. doi: 10.1016/j.jep.2004.04.008 PMID: 15234772
- Feng, L.; Ou, W.; Yang, Y.; Qi, Y.; Qi, Z.; Zhang, J. Black rice anthocyanins alleviate hyperuricemia in mice: Possible inhibitory effects on xanthine oxidase activity by cyanidin 3-O-glucoside. J. Cereal Sci., 2022, 104, 103406. doi: 10.1016/j.jcs.2021.103406
- Qin, Z.; Wang, S.; Lin, Y.; Zhao, Y.; Yang, S.; Song, J.; Xie, T.; Tian, J.; Wu, S.; Du, G. Antihyperuricemic effect of mangiferin aglycon derivative J99745 by inhibiting xanthine oxidase activity and urate transporter 1 expression in mice. Acta Pharm. Sin. B, 2018, 8(2), 306-315. doi: 10.1016/j.apsb.2017.05.004 PMID: 29719791
Қосымша файлдар
