A Review of Cartilage Defect Treatments Using Chitosan Hydrogels in Experimental Animal Models


Cite item

Full Text

Abstract

Introduction:Chitosan (CS) is a polycationic polysaccharide comprising glucosamine and N-acetylglucosamine and constitutes a potential material for use in cartilage tissue engineering. Moreover, CS hydrogels are able to promote the expression of cartilage matrix components and reduce inflammatory and catabolic mediator production by chondrocytes. Although all the positive outcomes, no review has analyzed the effects of CS hydrogels on cartilage repair in animal models.

Methods:This study aimed to review the literature to examine the effects of CS hydrogels on cartilage repair in experimental animal models. The search was done by the descriptors of the Medical Subject Headings (MeSH) defined below: "Chitosan," "hydrogel," "cartilage repair," and "in vivo." A total of 420 articles were retrieved from the databases Pubmed, Scopus, Embase, Lilacs, and Web of Science. After the eligibility analyses, this review reported 9 different papers from the beginning of 2002 through the middle of 2022.

Results:It was found that cartilage repair was improved with the treatment of CS hydrogel, especially the one enriched with cells. In addition, CS hydrogel produced an upregulation of genes and proteins that act in the cartilage repair process, improving the biomechanical properties of gait.

Conclusion:In conclusion, CS hydrogels were able to stimulate tissue ingrowth and accelerate the process of cartilage repair in animal studies.

About the authors

Lais Souza-Silva

Department of Biosciences, Federal University of São Paulo (UNIFESP)

Email: info@benthamscience.net

Cintia Cristina Santi Martignago

Department of Biosciences, Federal University of São Paulo (UNIFESP)

Email: info@benthamscience.net

Homero Garcia Motta

Department of Biosciences, Federal University of São Paulo (UNIFESP)

Email: info@benthamscience.net

Mirian Bonifacio

Department of Biosciences, Federal University of São Paulo (UNIFESP)

Email: info@benthamscience.net

Ingrid Regina Avanzi

Department of Biosciences, Federal University of São Paulo (UNIFESP)

Email: info@benthamscience.net

Lívia Assis

Scientific and Technological Institute, Brazil University

Email: info@benthamscience.net

Daniel Araki Ribeiro

Department of Biosciences, Federal University of São Paulo (UNIFESP)

Email: info@benthamscience.net

Julia Risso Parisi

Department of Biosciences, Federal University of São Paulo (UNIFESP)

Email: info@benthamscience.net

Ana Claudia Rennó

Department of Biosciences, Federal University of São Paulo (UNIFESP)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Cervantes-Diaz, F.; Contreras, P.; Marcellini, S. Evolutionary origin of endochondral ossification: The transdifferentiation hypothesis. Dev. Genes Evol., 2017, 227(2), 121-127. doi: 10.1007/s00427-016-0567-y PMID: 27909803
  2. Oliveira, J.M.; Ribeiro, V.P.; Reis, R.L. Advances on gradient scaffolds for osteochondral tissue engineering. Prog. Biomed. Eng., 2021, 3(3), 033001. doi: 10.1088/2516-1091/abfc2c
  3. Liao, J.; Tian, T.; Shi, S.; Xie, X.; Ma, Q.; Li, G.; Lin, Y. The fabrication of biomimetic biphasic CAN-PAC hydrogel with a seamless interfacial layer applied in osteochondral defect repair. Bone Res., 2017, 5, 17018. doi: 10.1038/boneres.2017.18
  4. Mellati, A.; Fan, C.M.; Tamayol, A.; Annabi, N.; Dai, S.; Bi, J.; Jin, B.; Xian, C.; Khademhosseini, A.; Zhang, H. Microengineered 3D cell-laden thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering. Biotechnol. Bioeng., 2017, 114(1), 217-231. doi: 10.1002/bit.26061 PMID: 27477393
  5. Han, L.; Liu, K.; Wang, M.; Wang, K.; Fang, L.; Chen, H.; Zhou, J.; Lu, X. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv. Funct. Mater., 2018, 28(3), 1704195. doi: 10.1002/adfm.201704195
  6. Zhang, Y.S.; Khademhosseini, A. 乳鼠心肌提取 HHS Public Access. Science, 2017, 356(6337), 139-148. doi: 10.1126/science.aaf3627.Advances
  7. Comblain, F.; Rocasalbas, G.; Gauthier, S.; Henrotin, Y. Chitosan: A promising polymer for cartilage repair and viscosupplementation. Biomed. Mater. Eng., 2017, 28(s1), S209-S215. doi: 10.3233/BME-171643 PMID: 28372297
  8. Kaderli, S.; Boulocher, C.; Pillet, E.; Watrelot-Virieux, D.; Rougemont, A.L.; Roger, T.; Viguier, E.; Gurny, R.; Scapozza, L.; Jordan, O. A novel biocompatible hyaluronic acid–chitosan hybrid hydrogel for osteoarthrosis therapy. Int. J. Pharm., 2015, 483(1-2), 158-168. doi: 10.1016/j.ijpharm.2015.01.052 PMID: 25666331
  9. Muzzarelli, R.; Baldassarre, V.; Conti, F.; Ferrara, P.; Biagini, G.; Gazzanelli, G.; Vasi, V. Biological activity of chitosan: Ultrastructural study. Biomaterials, 1988, 9(3), 247-252. doi: 10.1016/0142-9612(88)90092-0 PMID: 3408796
  10. Oprenyeszk, F.; Chausson, M.; Maquet, V.; Dubuc, J.E.; Henrotin, Y. Protective effect of a new biomaterial against the development of experimental osteoarthritis lesions in rabbit: A pilot study evaluating the intra-articular injection of alginate-chitosan beads dispersed in an hydrogel. Osteoarthritis Cartilage, 2013, 21(8), 1099-1107. doi: 10.1016/j.joca.2013.04.017 PMID: 23680875
  11. Li, Z.; Ramay, H.R.; Hauch, K.D.; Xiao, D.; Zhang, M. Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials, 2005, 26(18), 3919-3928. doi: 10.1016/j.biomaterials.2004.09.062 PMID: 15626439
  12. Patchornik, S.; Ram, E.; Ben Shalom, N.; Nevo, Z.; Robinson, D. Chitosan-hyaluronate hybrid gel intraarticular injection delays osteoarthritis progression and reduces pain in a rat meniscectomy model as compared to saline and hyaluronate treatment. Adv. Orthop., 2012, 2012, 1-5. doi: 10.1155/2012/979152 PMID: 22611500
  13. Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.M.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol., 2014, 14(1), 43. doi: 10.1186/1471-2288-14-43 PMID: 24667063
  14. Liu, C.; Liu, D.; Wang, Y.; Li, Y.; Li, T.; Zhou, Z.; Yang, Z.; Wang, J.; Zhang, Q. Glycol chitosan/oxidized hyaluronic acid hydrogels functionalized with cartilage extracellular matrix particles and incorporating BMSCs for cartilage repair. Artif. Cells Nanomed. Biotechnol., 2018, 46(S1), 721-732. doi: 10.1080/21691401.2018.1434662
  15. Park, Y.B.; Song, M.; Lee, C.H.; Kim, J.A.; Ha, C.W. Cartilage repair by human umbilical cord blood‐derived mesenchymal stem cells with different hydrogels in a rat model. J. Orthop. Res., 2015, 33(11), 1580-1586. doi: 10.1002/jor.22950 PMID: 26019012
  16. Yang, J.; Jing, X.; Wang, Z.; Liu, X.; Zhu, X.; Lei, T.; Li, X.; Guo, W.; Rao, H.; Chen, M.; Luan, K.; Sui, X.; Wei, Y.; Liu, S.; Guo, Q. In vitro and in vivo study on an injectable glycol chitosan/dibenzaldehyde-terminated polyethylene glycol hydrogel in repairing articular cartilage defects. Front. Bioeng. Biotechnol., 2021, 9, 607709. doi: 10.3389/fbioe.2021.607709 PMID: 33681156
  17. Cui, P.; Pan, P.; Qin, L.; Wang, X.; Chen, X.; Deng, Y.; Zhang, X. Nanoengineered hydrogels as 3D biomimetic extracellular matrix with injectable and sustained delivery capability for cartilage regeneration. Bioact. Mater., 2023, 19, 487-498. doi: 10.1016/j.bioactmat.2022.03.032 PMID: 35600973
  18. Jia, Z.; Zhu, F.; Li, X.; Liang, Q.; Zhuo, Z.; Huang, J.; Duan, L.; Xiong, J.; Wang, D. Repair of osteochondral defects using injectable chitosan-based hydrogel encapsulated synovial fluid-derived mesenchymal stem cells in a rabbit model. Mater. Sci. Eng. C, 2019, 99, 541-551. doi: 10.1016/j.msec.2019.01.115 PMID: 30889728
  19. Naghizadeh, Z.; Karkhaneh, A.; Nokhbatolfoghahaei, H.; Farzad-Mohajeri, S.; Rezai-Rad, M.; Dehghan, M.M.; Aminishakib, P.; Khojasteh, A. Cartilage regeneration with dual‐drug‐releasing injectable hydrogel/microparticle system: In vitro and in vivo study. J. Cell. Physiol., 2021, 236(3), 2194-2204. doi: 10.1002/jcp.30006 PMID: 32776540
  20. Wan, W.; Li, Q.; Gao, H.; Ge, L.; Liu, Y.; Zhong, W.; Ouyang, J.; Xing, M. BMSCs laden injectable amino-diethoxypropane modified alginate-chitosan hydrogel for hyaline cartilage reconstruction. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(9), 1990-2005. doi: 10.1039/C4TB01394H PMID: 32262269
  21. Kumari, K.; Kundu, P.P. Studies on In vitro release of CPM from semi-interpenetrating polymer network (IPN) composed of chitosan and glutamic acid. Bull. Mater. Sci., 2008, 31(2), 159-167. doi: 10.1007/s12034-008-0028-y
  22. Shen, K.; Liu, X.; Qin, H.; Chai, Y.; Wang, L.; Yu, B. Ha-g-cs implant and moderate-intensity exercise stimulate subchondral bone remodeling and promote repair of osteochondral defects in mice. Int. J. Med. Sci., 2021, 18(16), 3808-3820. doi: 10.7150/ijms.63401 PMID: 34790057
  23. Zhao, M.; Chen, Z.; Liu, K.; Wan, Y.; Li, X.; Luo, X.; Bai, Y.; Yang, Z.; Feng, G. Repair of articular cartilage defects in rabbits through tissue-engineered cartilage constructed with chitosan hydrogel and chondrocytes. J. Zhejiang Univ. Sci. B, 2015, 16(11), 914-923. doi: 10.1631/jzus.B1500036 PMID: 26537209
  24. Ahmadi, F.; Oveisi, Z.; Samani, M.; Amoozgar, Z. Chitosan based hydrogels: Characteristics and pharmaceutical applications. Res. Pharm. Sci., 2015, 10(1), 1-16.
  25. Assenmacher, A.T.; Pareek, A.; Reardon, P.J.; Macalena, J.A.; Stuart, M.J.; Krych, A.J. Long-term outcomes after osteochondral allograft: A systematic review at long-term follow-up of 12.3 Years. Arthroscopy, 2016, 32(10), 2160-2168. doi: 10.1016/j.arthro.2016.04.020 PMID: 27317013
  26. Gan, D.; Wang, Z.; Xie, C.; Wang, X.; Xing, W.; Ge, X.; Yuan, H.; Wang, K.; Tan, H.; Lu, X. Mussel‐inspired tough hydrogel with in situ nanohydroxyapatite mineralization for osteochondral defect repair. Adv. Healthc. Mater., 2019, 8(22), 1901103. doi: 10.1002/adhm.201901103 PMID: 31609095
  27. Levingstone, T.J.; Thompson, E.; Matsiko, A.; Schepens, A.; Gleeson, J.P.; O’Brien, F.J. Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits. Acta Biomater., 2016, 32, 149-160. doi: 10.1016/j.actbio.2015.12.034 PMID: 26724503
  28. Kessler, M.W.; Ackerman, G.; Dines, J.S.; Grande, D. Emerging technologies and fourth generation issues in cartilage repair. Sports Med. Arthrosc. Rev., 2008, 16(4), 246-254. doi: 10.1097/JSA.0b013e31818d56b3 PMID: 19011557
  29. Gonzalez-Fernandez, P.; Rodríguez-Nogales, C.; Jordan, O.; Allémann, E. Combination of mesenchymal stem cells and bioactive molecules in hydrogels for osteoarthritis treatment. Eur. J. Pharm. Biopharm., 2022, 172, 41-52. doi: 10.1016/j.ejpb.2022.01.003 PMID: 35114357
  30. He, Z.; Wang, B.; Hu, C.; Zhao, J. An overview of hydrogel-based intra-articular drug delivery for the treatment of osteoarthritis. In: Colloids and Surfaces B: Biointerfaces; Elsevier, 2017; 154, pp. 33-39. doi: 10.1016/j.colsurfb.2017.03.003
  31. Narmatha Christy, P.; Khaleel Basha, S.; Sugantha Kumari, V.; Bashir, A.K.H.; Maaza, M.; Kaviyarasu, K. Biopolymeric nanocomposite scaffolds for bone tissue engineering applications - A review. J. Drug Deliv. Sci. Technol., 2020, 55, 101452. doi: 10.1016/j.jddst.2019.101452
  32. Minhajul Islam, Md.; Shahruzzaman, Md.; Shanta Biswas, Md. Chitosan based bioactive materials in tissue engineering applications-A review. Bioact. Mater., 2020, 5(1), 164-183. doi: 10.1016/j.bioactmat.2020.01.012
  33. Farokhi, M.; Jonidi Shariatzadeh, F.; Solouk, A.; Mirzadeh, H. Alginate based scaffolds for cartilage tissue engineering: A review. Int. J. Polym. Mater., 2020, 69(4), 230-247. doi: 10.1080/00914037.2018.1562924
  34. Alphandéry, E. A discussion on existing nanomedicine regulation: Progress and pitfalls. Appl. Mater. Today, 2019, 17, 193-205. doi: 10.1016/j.apmt.2019.07.005

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers