Whole Transcriptome Sequencing of Peripheral Blood Identifies the Alzheimer's Disease-Related circRNA-miRNA-lncRNA Pathway


Cite item

Full Text

Abstract

Background::Previous studies on transcriptional profiles suggested dysregulation of multiple RNA species in Alzheimer’s disease. However, despite recent investigations revealing various aspects of circular RNA (circRNA)-associated competing endogenous RNA (ceRNA) networks in Alzheimer's Disease (AD) pathogenesis, few genome-wide studies have explored circRNA-associated profiles in AD patients exhibiting varying degrees of cognitive loss.

Objective::To investigate the potential pathogenesis-related molecular biological changes in the various stages of AD progression.

Methods::Whole transcriptome sequencing was performed on the peripheral blood of 7 normal cognition (NC) subjects, 8 patients with mild cognitive impairment, 8 AD patients with mild dementia (miD), and 7 AD patients with moderate dementia (moD). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to predict the potential functions of the maternal genes of microRNAs (miRNAs), circRNAs and long non-coding RNAs (lncRNAs). The construction of ceRNA network was performed between the NC group and each diseased group based on the differently expressed RNAs.

Results::In total, 3568 messenger RNAs (mRNAs), 142 miRNAs, 990 lncRNAs, and 183 circRNAs were identified as significantly differentially expressed across the four groups. GO and KEGG enrichment analysis revealed the significant roles of GTPase activity and the MAPK signaling pathway in AD pathogenesis. A circRNA-miRNA-lncRNA ceRNA pathway, characterized by the downregulated hsa-miR-7-5p and upregulated hsa_circ_0001170, was identified based on the differentially expressed RNAs between the NC group and the moD group.

Conclusion::The study suggests that circRNAs may be independent of mRNAs in AD pathogenesis and holds promise as potential biomarkers for AD clinical manifestations and pathological changes.

About the authors

Yucheng Gu

Department of Neurology, Nanjing First Hospital,, Nanjing Medical University

Email: info@benthamscience.net

Nihong Chen

Department of Neurology, Nanjing First Hospital, Nanjing Medical University

Email: info@benthamscience.net

Lin Zhu

Department of Neurology, Nanjing First Hospital,, Nanjing Medical University

Email: info@benthamscience.net

Xiangliang Chen

Department of Neurology, Nanjing First Hospital, Nanjing Medical University

Email: info@benthamscience.net

Teng Jiang

Department of Neurology, Nanjing First Hospital, Nanjing Medical University

Email: info@benthamscience.net

Yingdong Zhang

Department of Neurology, Nanjing First Hospital, Nanjing Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Prince M, Ali GC, Guerchet M, Prina AM, Albanese E, Wu YT. Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers Res Ther 2016; 8(1): 23. doi: 10.1186/s13195-016-0188-8 PMID: 27473681
  2. Kawas C, Gray S, Brookmeyer R, Fozard J, Zonderman A. Age-specific incidence rates of Alzheimer’s disease. Neurology 2000; 54(11): 2072-7. doi: 10.1212/WNL.54.11.2072 PMID: 10851365
  3. Mirra SS, Heyman A, McKeel D, et al. The consortium to establish a registry for Alzheimer’s Disease (CERAD). Neurology 1991; 41(4): 479-86. doi: 10.1212/WNL.41.4.479 PMID: 2011243
  4. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Tredici DK. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 2006; 112(4): 389-404. doi: 10.1007/s00401-006-0127-z PMID: 16906426
  5. Braak H, Thal DR, Ghebremedhin E, Tredici DK. Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. J Neuropathol Exp Neurol 2011; 70(11): 960-9. doi: 10.1097/NEN.0b013e318232a379 PMID: 22002422
  6. Jack CR Jr, Bennett DA, Blennow K, et al. NIA‐AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14(4): 535-62. doi: 10.1016/j.jalz.2018.02.018 PMID: 29653606
  7. Dubois B, Villain N, Frisoni GB, et al. Clinical diagnosis of Alzheimer’s disease: Recommendations of the international working group. Lancet Neurol 2021; 20(6): 484-96. doi: 10.1016/S1474-4422(21)00066-1 PMID: 33933186
  8. Guerra BS, Lima J, Araujo BHS, et al. Biogenesis of circular RNAs and their role in cellular and molecular phenotypes of neurological disorders. Semin Cell Dev Biol 2021; 114: 1-10. doi: 10.1016/j.semcdb.2020.08.003 PMID: 32893132
  9. Zhang Y, Xue W, Li X, et al. The biogenesis of nascent circular RNAs. Cell Rep 2016; 15(3): 611-24. doi: 10.1016/j.celrep.2016.03.058 PMID: 27068474
  10. Lei K, Bai H, Wei Z, et al. The mechanism and function of circular RNAs in human diseases. Exp Cell Res 2018; 368(2): 147-58. doi: 10.1016/j.yexcr.2018.05.002 PMID: 29730164
  11. Hansen TB, Wiklund ED, Bramsen JB, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 2011; 30(21): 4414-22. doi: 10.1038/emboj.2011.359 PMID: 21964070
  12. Westholm JO, Miura P, Olson S, et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 2014; 9(5): 1966-80. doi: 10.1016/j.celrep.2014.10.062 PMID: 25544350
  13. You X, Vlatkovic I, Babic A, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 2015; 18(4): 603-10. doi: 10.1038/nn.3975 PMID: 25714049
  14. Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 2015; 58(5): 870-85. doi: 10.1016/j.molcel.2015.03.027 PMID: 25921068
  15. Liang D, Tatomer DC, Luo Z, et al. The output of protein-coding genes shifts to circular RNAs when the Pre-mRNA processing machinery is limiting. Mol Cell 2017; 68(5): 940-954.e3. doi: 10.1016/j.molcel.2017.10.034 PMID: 29174924
  16. Carles CL, Icardo DO, Porcel ML, et al. Assessing circular RNAs in Alzheimer’s disease and frontotemporal lobar degeneration. Neurobiol Aging 2020; 92: 7-11. doi: 10.1016/j.neurobiolaging.2020.03.017 PMID: 32335360
  17. Liu L, Chen X, Chen YH, Zhang K. Identification of circular RNA hsa_Circ_0003391 in peripheral blood is potentially associated with Alzheimer’s disease. Front Aging Neurosci 2020; 12: 601965. doi: 10.3389/fnagi.2020.601965 PMID: 33424579
  18. Bondi MW, Edmonds EC, Jak AJ, et al. Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates. J Alzheimers Dis 2014; 42(1): 275-89. doi: 10.3233/JAD-140276 PMID: 24844687
  19. Edmonds EC, Delano-Wood L, Galasko DR, Salmon DP, Bondi MW. Subtle cognitive decline and biomarker staging in preclinical Alzheimer’s disease. J Alzheimers Dis 2015; 47(1): 231-42. doi: 10.3233/JAD-150128 PMID: 26402771
  20. Minoshima S, Drzezga AE, Barthel H, et al. SNMMI procedure standard/EANM practice guideline for amyloid PET imaging of the brain 1.0. J Nucl Med 2016; 57(8): 1316-22. doi: 10.2967/jnumed.116.174615 PMID: 27481605
  21. Dobin A, Davis CA, Schlesinger F, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29(1): 15-21. doi: 10.1093/bioinformatics/bts635 PMID: 23104886
  22. Li B, Dewey CN. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011; 12: 323. doi: 10.1186/1471-2105-12-323
  23. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009; 10(3): R25. doi: 10.1186/gb-2009-10-3-r25 PMID: 19261174
  24. Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 2012; 40(1): 37-52. doi: 10.1093/nar/gkr688 PMID: 21911355
  25. Kozomara A, Jones GS. miRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014; 42(D1): D68-73. doi: 10.1093/nar/gkt1181
  26. Kozomara A, Birgaoanu M, Jones GS. miRBase: From microRNA sequences to function. Nucleic Acids Res 2019; 47(D1): D155-62. doi: 10.1093/nar/gky1141
  27. Aguilar BJ, Zhu Y, Lu Q. Rho GTPases as therapeutic targets in Alzheimer’s disease. Alzheimers Res Ther 2017; 9(1): 97. doi: 10.1186/s13195-017-0320-4 PMID: 29246246
  28. Jordan KL, Koss DJ, Outeiro TF, Giorgini F. Therapeutic targeting of rab GTPases: Relevance for Alzheimer’s disease. Biomedicines 2022; 10(5): 1141. doi: 10.3390/biomedicines10051141 PMID: 35625878
  29. Musilli M, Nicolia V, Borrelli S, Scarpa S, Diana G. Behavioral effects of Rho GTPase modulation in a model of Alzheimer’s disease. Behav Brain Res 2013; 237: 223-9. doi: 10.1016/j.bbr.2012.09.043 PMID: 23026376
  30. De Filippis B, Valenti D, Chiodi V, et al. Modulation of Rho GTPases rescues brain mitochondrial dysfunction, cognitive deficits and aberrant synaptic plasticity in female mice modeling Rett syndrome. Eur Neuropsychopharmacol 2015; 25(6): 889-901. doi: 10.1016/j.euroneuro.2015.03.012 PMID: 25890884
  31. Tan MS, Yang YX, Xu W, et al. Associations of Alzheimer’s disease risk variants with gene expression, amyloidosis, tauopathy, and neurodegeneration. Alzheimers Res Ther 2021; 13(1): 15. doi: 10.1186/s13195-020-00755-7 PMID: 33419465
  32. Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull 2016; 126(Pt 3): 238-92. doi: 10.1016/j.brainresbull.2016.08.018 PMID: 27615390
  33. Puig B, Gómez-Isla T, Ribé E, et al. Expression of stress‐activated kinases c‐Jun N‐terminal kinase (SAPK/JNK‐P) and p38 kinase (p38‐P), and tau hyperphosphorylation in neurites surrounding βA plaques in APP Tg2576 mice. Neuropathol Appl Neurobiol 2004; 30(5): 491-502. doi: 10.1111/j.1365-2990.2004.00569.x PMID: 15488025
  34. Tabner BJ, Agnaf EOMA, Turnbull S, et al. Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial British dementia. J Biol Chem 2005; 280(43): 35789-92. doi: 10.1074/jbc.C500238200 PMID: 16141213
  35. Tamagno E, Guglielmotto M, Giliberto L, et al. JNK and ERK1/2 pathways have a dual opposite effect on the expression of BACE1. Neurobiol Aging 2009; 30(10): 1563-73. doi: 10.1016/j.neurobiolaging.2007.12.015 PMID: 18255190
  36. Liao YF, Wang BJ, Cheng HT, Kuo LH, Wolfe MS. Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J Biol Chem 2004; 279(47): 49523-32. doi: 10.1074/jbc.M402034200 PMID: 15347683
  37. Dong X, Bai Y, Liao Z, et al. Circular RNAs in the human brain are tailored to neuron identity and neuropsychiatric disease. Nat Commun 2023; 14(1): 5327. doi: 10.1038/s41467-023-40348-0 PMID: 37723137
  38. Puri S, Hu J, Sun Z, et al. Identification of circRNAs linked to Alzheimer’s disease and related dementias. Alzheimers Dement 2023; 19(8): 3389-405. doi: 10.1002/alz.12960 PMID: 36795937
  39. Chen SD, Lu JY, Li HQ, et al. Staging tau pathology with tau PET in Alzheimer’s disease: A longitudinal study. Transl Psychiatry 2021; 11(1): 483. doi: 10.1038/s41398-021-01602-5 PMID: 34537810
  40. Dube U, Del-Aguila JL, Li Z, et al. An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat Neurosci 2019; 22(11): 1903-12. doi: 10.1038/s41593-019-0501-5 PMID: 31591557
  41. Su L, Wang C, Zheng C, Wei H, Song X. A meta-analysis of public microarray data identifies biological regulatory networks in Parkinson’s disease. BMC Med Genomics 2018; 11(1): 40. doi: 10.1186/s12920-018-0357-7 PMID: 29653596
  42. Sabaie H, Moghaddam MM, Moghaddam MM, et al. Long non-coding RNA-associated competing endogenous RNA axes in the olfactory epithelium in schizophrenia: A bioinformatics analysis. Sci Rep 2021; 11(1): 24497. doi: 10.1038/s41598-021-04326-0 PMID: 34969953
  43. Kern F, Krammes L, Danz K, et al. Validation of human microRNA target pathways enables evaluation of target prediction tools. Nucleic Acids Res 2021; 49(1): 127-44. doi: 10.1093/nar/gkaa1161 PMID: 33305319
  44. Lee M, Woo J, Kim ST, et al. MicroRNA super-resolution imaging in blood for Alzheimer’s disease. BMB Rep 2023; 56(3): 190-5. doi: 10.5483/BMBRep.2022-0151 PMID: 36404596
  45. McMillan KJ, Murray TK, Vergniory BN, et al. Loss of MicroRNA-7 regulation leads to α-synuclein accumulation and dopaminergic neuronal loss in vivo. Mol Ther 2017; 25(10): 2404-14. doi: 10.1016/j.ymthe.2017.08.017 PMID: 28927576
  46. Twohig D, Nielsen HM. α-synuclein in the pathophysiology of Alzheimer’s disease. Mol Neurodegener 2019; 14: 19. doi: 10.1186/s13024-019-0320-x
  47. Shim KH, Kang MJ, Youn YC, An SSA, Kim S. Alpha-synuclein: A pathological factor with Aβ and tau and biomarker in Alzheimer’s disease. Alzheimers Res Ther 2022; 14(1): 14. doi: 10.1186/s13195-022-01150-0
  48. Qiu Y, Hou Y, Zhou Y. Comprehensive characterization of multi-omic landscapes between gut-microbiota metabolites and the G-protein-coupled receptors in Alzheimer’s disease. bioRxiv 2022. doi: 10.1101/2022.09.20.508759
  49. Kamboh MI. Genomics and functional genomics of Alzheimer’s disease. Neurotherapeutics 2022; 19(1): 152-72. doi: 10.1007/s13311-021-01152-0
  50. Gu L, Xu G, Liu D. Poly (adenosine diphosphate ribose) polymerase-1 single nucleotide polymorphism in the 3′-untranslated region for ischemic stroke risk reduction. Curr Neurovasc Res 2021; 18(3): 302-6. doi: 10.2174/1567202618666210916122553 PMID: 34530710
  51. da Galváo FG, Dantas FFL, da Silva EV, Leon ASV, de Souza JM. Association of variants in FCGR2A, PTPN2, and GM-CSF with cerebral cavernous malformation: Potential biomarkers for a symptomatic disease. Curr Neurovasc Res 2021; 18(2): 172-80. doi: 10.2174/1567202618666210603125630 PMID: 34082682

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers