Research Progress of Eye Movement Analyses and its Detection Algorithms in Alzheimer’s Disease


Cite item

Full Text

Abstract

Alzheimer's disease (AD) has been considered one of the most challenging forms of dementia. The earlier the people are diagnosed with AD, the easier it is for doctors to find a treatment. Based on the previous literature summarizing the research results on the relationship between eye movement and AD before 2013, this paper reviewed 34 original eye movements research papers only closely related to AD published in the past ten years and pointed out that the prosaccade (4 papers) and antisaccade (5 papers) tasks, reading tasks (3 papers), visual search tasks (3 papers) are still the research objects of many researchers, Some researchers have looked at King-Devick tasks (2 papers), reading tasks (3 papers) and special tasks (8 papers), and began to use combinations of different saccade tasks to detect the relationship between eye movement and AD, which had not been done before. These reflect the diversity of eye movement tasks and the complexity and difficulty of the relationship between eye movement and AD. On this basis, the current processing and analysis methods of eye movement datasets are analyzed and discussed in detail, and we note that certain key data that may be especially important for the early diagnosis of AD by using eye movement studies cannot be miss-classified as noise and removed. Finally, we note that the development of methods that can accurately denoise and classify and quickly process massive eye movement data is quite significant for detecting eye movements in early diagnosis of AD.

About the authors

Xueying He

School of Electronic Information and Communications, Huazhong University of Science and Technology

Author for correspondence.
Email: info@benthamscience.net

Ivan Selesnick

Tandon School of Engineering, New York University

Author for correspondence.
Email: info@benthamscience.net

Ming Zhu

School of Electronic Information and Communications, Huazhong University of Science and Technology

Email: info@benthamscience.net

References

  1. Alzheimer’s Association. 2015 Alzheimer’s disease facts and figures. Alzheimers Dement 2015; 11(3): 332-84. doi: 10.1016/j.jalz.2015.02.003 PMID: 25984581
  2. Zhang JJ, Ze-Xuan-Zhu , Guang-Min-Xu , Su P, Lei Q, Li W. Comprehensive analysis of differential expression profiles of long non-coding RNAs with associated co-expression and competing endogenous RNA networks in the hippocampus of patients with Alzheimer’s disease. Curr Alzheimer Res 2021; 18(11): 884-99. doi: 10.2174/1567205018666211202143449 PMID: 34856901
  3. Jin S, Guan X, Min D. Evidence of clinical efficacy and pharmacological mechanisms of resveratrol in the treatment of Alzheimer’s disease. Curr Alzheimer Res 2023; 20(8): 588-602. doi: 10.2174/0115672050272577231120060909 PMID: 38047366
  4. Green ZD, Kueck PJ, John CS, Burns JM, Morris JK. Blood biomarkers discriminate cerebral anyloid status and cognitive diagnosis when collected with ACD-anticoagulant. Curr Alzheimer Res 2023; 20(8): 557-66. doi: 10.2174/0115672050271523231111192725 PMID: 38047367
  5. Süß P, Schlachetzki JCM. Microglia in Alzheimer’s disease. Curr Alzheimer Res 2020; 17(1): 29-43. doi: 10.2174/1567205017666200212155234 PMID: 32048973
  6. Prince PM, Ali G, Ali G. World Alzheimer Report 2015. The Global Impact of Dementia. 2015. Available From: https://www.alzint.org/u/WorldAlzheimerReport2015.pdf
  7. Alzheimer’s Association. 2019 Alzheimer’s disease facts and figures. Alzheimers Dement 2019; 15(3): 321-87. doi: 10.1016/j.jalz.2019.01.010
  8. Jack CR Jr, Bennett DA, Blennow K, et al. NIA‐AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14(4): 535-62. doi: 10.1016/j.jalz.2018.02.018 PMID: 29653606
  9. Nakamura A, Kaneko N, Villemagne VL, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 2018; 554(7691): 249-54. doi: 10.1038/nature25456 PMID: 29420472
  10. Xiong Y, Ye C, Sun R, et al. Disrupted balance of gray matter volume and directed functional connectivity in mild cognitive impairment and Alzheimer’s disease. Curr Alzheimer Res 2023; 20(3): 161-74. doi: 10.2174/1567205020666230602144659 PMID: 37278043
  11. Braak H, Braak E. Staging of alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 1995; 16(3): 271-8. doi: 10.1016/0197-4580(95)00021-6 PMID: 7566337
  12. Daffner KR, Scinto LFM, Weintraub S, Guinessey JE, Mesulam MM. Diminished curiosity in patients with probable Alzheimer’s disease as measured by exploratory eye movements. Neurology 1992; 42(2): 320-8. doi: 10.1212/WNL.42.2.320 PMID: 1736159
  13. Katz B, Rimmer S. Ophthalmologic manifestations of Alzheimer’s disease. Surv Ophthalmol 1989; 34(1): 31-43. doi: 10.1016/0039-6257(89)90127-6 PMID: 2678551
  14. Opwonya J, Doan DNT, Kim SG, et al. Saccadic eye movement in mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis. Neuropsychol Rev 2022; 32(2): 193-227. doi: 10.1007/s11065-021-09495-3 PMID: 33959887
  15. Anderson TJ, MacAskill MR. Eye movements in patients with neurodegenerative disorders. Nat Rev Neurol 2013; 9(2): 74-85. doi: 10.1038/nrneurol.2012.273 PMID: 23338283
  16. Hannula DE, Althoff RR, Warren DE, Riggs L, Cohen NJ, Ryan JD. Worth a glance: Using eye movements to investigate the cognitive neuroscience of memory. Front Hum Neurosci 2010; 4: 166. doi: 10.3389/fnhum.2010.00166 PMID: 21151363
  17. Santana R, Mendiburu A, Lozano JA. Multi-view classification of psychiatric conditions based on saccades. Appl Soft Comput 2015; 31: 308-16. doi: 10.1016/j.asoc.2015.02.038
  18. Leigh RJ, Zee DS. The neurology of eye movements. New York: Oxford University Press 2015. doi: 10.1093/med/9780199969289.001.0001
  19. Molitor RJ, Ko PC, Ally BA. Eye movements in Alzheimer’s disease. J Alzheimers Dis 2015; 44(1): 1-12. doi: 10.3233/JAD-141173 PMID: 25182738
  20. Kowalska M, Wize K, Prendecki M, Lianeri M, Kozubski W, Dorszewska J. Genetic variants and oxidative stress in Alzheimer’s disease. Curr Alzheimer Res 2020; 17(3): 208-23. doi: 10.2174/1567205017666200224121447 PMID: 32091332
  21. Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology based theranostic approaches in Alzheimer’s disease management: Current status and future perspective. Curr Alzheimer Res 2017; 14(11): 1164-81. PMID: 28482786
  22. Jia J, Zhang Y, Shi Y, et al. A 19-year-old adolescent with probable Alzheimer’s Disease. J Alzheimers Dis 2023; 91(3): 915-22. doi: 10.3233/JAD-221065 PMID: 36565128
  23. Perry G. Alzheimer’s disease: Not just for the aged? J Alzheimers Dis 2023; 91(3): 923-4. doi: 10.3233/JAD-230016 PMID: 36710685
  24. Boz HE, Koçoğlu K, Akkoyun M, et al. The influence of stimulus eccentricity on prosaccade outcomes in patients with Alzheimer’s Disease dementia at an early stage and amnestic mild cognitive impairment. J Clin Exp Neuropsychol 2022; 44(10): 713-29. doi: 10.1080/13803395.2023.2183937 PMID: 36856708
  25. Yang Q, Wang T, Su N, Xiao S, Kapoula Z. Specific saccade deficits in patients with Alzheimer’s disease at mild to moderate stage and in patients with amnestic mild cognitive impairment. Age (Omaha) 2013; 35(4): 1287-98. doi: 10.1007/s11357-012-9420-z PMID: 22576337
  26. Polden M, Wilcockson TDW, Crawford TJ. The disengagement of visual attention: An eye-tracking study of cognitive impairment, ethnicity and age. Brain Sci 2020; 10(7): 461. doi: 10.3390/brainsci10070461 PMID: 32708375
  27. Crawford TJ, Devereaux A, Higham S, Kelly C. The disengagement of visual attention in Alzheimer’s disease: A longitudinal eye-tracking study. Front Aging Neurosci 2015; 7: 118. doi: 10.3389/fnagi.2015.00118 PMID: 26157388
  28. Heuer HW, Mirsky JB, Kong EL, et al. Antisaccade task reflects cortical involvement in mild cognitive impairment. Neurology 2013; 81(14): 1235-43. doi: 10.1212/WNL.0b013e3182a6cbfe PMID: 23986300
  29. Wilcockson TDW, Mardanbegi D, Xia B, et al. Abnormalities of saccadic eye movements in dementia due to Alzheimer’s disease and mild cognitive impairment. Aging (Albany NY) 2019; 11(15): 5389-98. doi: 10.18632/aging.102118 PMID: 31375642
  30. Crawford TJ, Taylor S, Mardanbegi D, et al. The effects of previous error and success in Alzheimer’s disease and mild cognitive impairment. Sci Rep 2019; 9(1): 20204. doi: 10.1038/s41598-019-56625-2 PMID: 31882919
  31. Kaufman LD, Pratt J, Levine B, Black SE. Executive deficits detected in mild Alzheimer’s disease using the antisaccade task. Brain Behav 2012; 2(1): 15-21. doi: 10.1002/brb3.28 PMID: 22574270
  32. Alichniewicz KK, Brunner F, Klünemann HH, Greenlee MW. Neural correlates of saccadic inhibition in healthy elderly and patients with amnestic mild cognitive impairment. Front Psychol 2013; 4: 467. doi: 10.3389/fpsyg.2013.00467 PMID: 23898312
  33. Galetta KM, Chapman KR, Essis MD, et al. Screening utility of the King-Devick test in mild cognitive impairment and Alzheimer’s disease dementia. Alzheimer Dis Assoc Disord 2017; 31(2): 152-8. doi: 10.1097/WAD.0000000000000157 PMID: 27299935
  34. Hannonen S, Andberg S, Kärkkäinen V, et al. Shortening of saccades as a possible easy-to-use biomarker to detect risk of Alzheimer’s disease. J Alzheimers Dis 2022; 88(2): 609-18. doi: 10.3233/JAD-215551 PMID: 35662117
  35. Boucart M, Bubbico G, Szaffarczyk S, Pasquier F. Animal spotting in Alzheimer’s disease: An eye tracking study of object categorization. J Alzheimers Dis 2014; 39(1): 181-9. doi: 10.3233/JAD-131331 PMID: 24121969
  36. Pereira MLGF, Camargo MZA, Bellan AFR, et al. Visual search efficiency in mild cognitive impairment and Alzheimer’s disease: An eye movement study. J Alzheimers Dis 2020; 75(1): 261-75. doi: 10.3233/JAD-190690 PMID: 32250291
  37. Ramzaoui H, Faure S, David R, Spotorno S. Top-down and bottom-up sources of eye-movement guidance during realistic scene search in Alzheimer’s disease. Neuropsychology 2022; 36(7): 597-613. doi: 10.1037/neu0000797 PMID: 35797174
  38. Davis R, Sikorskii A. Eye tracking analysis of visual cues during wayfinding in early stage Alzheimer’s disease. Dement Geriatr Cogn Disord 2020; 49(1): 91-7. doi: 10.1159/000506859 PMID: 32516764
  39. Chiu YC, Algase D, Whall A, et al. Getting lost: Directed attention and executive functions in early Alzheimer’s disease patients. Dement Geriatr Cogn Disord 2004; 17(3): 174-80. doi: 10.1159/000076353 PMID: 14739541
  40. Davis R, Ohman JM, Weisbeck C. Salient cues and wayfinding in alzheimer’s disease within a virtual senior residence. Environ Behav 2017; 49(9): 1038-65. doi: 10.1177/0013916516677341 PMID: 29230067
  41. Fernández G, Laubrock J, Mandolesi P, Colombo O, Agamennoni O. Registering eye movements during reading in Alzheimer’s disease: Difficulties in predicting upcoming words. J Clin Exp Neuropsychol 2014; 36(3): 302-16. doi: 10.1080/13803395.2014.892060 PMID: 24580505
  42. Fernández G, Castro LR, Schumacher M, Agamennoni OE. Diagnosis of mild Alzheimer disease through the analysis of eye movements during reading. J Integr Neurosci 2015; 14(1): 121-33. doi: 10.1142/S0219635215500090 PMID: 25728469
  43. Fernández G, Schumacher M, Castro L, Orozco D, Agamennoni O. Patients with mild Alzheimer’s disease produced shorter outgoing saccades when reading sentences. Psychiatry Res 2015; 229(1-2): 470-8. doi: 10.1016/j.psychres.2015.06.028 PMID: 26228165
  44. Suzuki A, Shinozaki J, Yazawa S, et al. Establishing a new screening system for mild cognitive impairment and Alzheimer’s disease with mental rotation tasks that evaluate visuospatial function. J Alzheimers Dis 2018; 61(4): 1653-65. doi: 10.3233/JAD-170801 PMID: 29376869
  45. Fernández G, Orozco D, Agamennoni O, et al. Visual processing during short-term memory binding in mild Alzheimer’s disease. J Alzheimers Dis 2018; 63(1): 185-94. doi: 10.3233/JAD-170728 PMID: 29614644
  46. Nakamagoe K, Yamada S, Kawakami R, Koganezawa T, Tamaoka A. Abnormal saccadic intrusions with Alzheimer’s disease in darkness. Curr Alzheimer Res 2019; 16(4): 293-301. doi: 10.2174/1567205016666190311102130 PMID: 30854969
  47. Laurens B, Planche V, Cubizolle S, et al. A spatial decision eye-tracking task in patients with prodromal and mild Alzheimer’s disease. J Alzheimers Dis 2019; 71(2): 613-21. doi: 10.3233/JAD-190549 PMID: 31424412
  48. Polden M, Crawford TJ. Active visual inhibition is preserved in the presence of a distracter: A cross-cultural, ageing and dementia study. Cortex 2021; 142: 169-85. doi: 10.1016/j.cortex.2021.05.016 PMID: 34271261
  49. Kim KW, Choi J, Chin J, Lee BH, Na DL. Eye-tracking metrics for figure-copying processes in early-vs. late-onset Alzheimer’s disease. Front Neurol 2022; 13: 844341. doi: 10.3389/fneur.2022.844341 PMID: 35651346
  50. Moghadami M, Moghimi S, Moghimi A, Malekzadeh GR, Fadardi JS. The investigation of simultaneous EEG and eye tracking characteristics during fixation task in mild Alzheimer’s disease. Clin EEG Neurosci 2021; 52(3): 211-20. doi: 10.1177/1550059420932752 PMID: 32539459
  51. Peltsch A, Hemraj A, Garcia A, Munoz DP. Saccade deficits in amnestic mild cognitive impairment resemble mild Alzheimer’s disease. Eur J Neurosci 2014; 39(11): 2000-13. doi: 10.1111/ejn.12617 PMID: 24890471
  52. Crawford TJ, Higham S, Mayes J, Dale M, Shaunak S, Lekwuwa G. The role of working memory and attentional disengagement on inhibitory control: Effects of aging and Alzheimer’s disease. Age (Omaha) 2013; 35(5): 1637-50. doi: 10.1007/s11357-012-9466-y PMID: 22903189
  53. Chehrehnegar N, Shati M, Esmaeili M, Foroughan M. Executive function deficits in mild cognitive impairment: Evidence from saccade tasks. Aging Ment Health 2022; 26(5): 1001-9. doi: 10.1080/13607863.2021.1913471 PMID: 33928806
  54. Holden JG, Cosnard A, Laurens B, et al. Prodromal Alzheimer’s disease demonstrates increased errors at a simple and automated anti-saccade task. J Alzheimers Dis 2018; 65(4): 1209-23. doi: 10.3233/JAD-180082 PMID: 30149445
  55. Bourgin J, Guyader N, Chauvin A, et al. Early emotional attention is impacted in Alzheimer’s disease: An eye-tracking study. J Alzheimers Dis 2018; 63(4): 1445-58. doi: 10.3233/JAD-180170 PMID: 29782325
  56. Noiret N, Carvalho N, Laurent É, et al. Saccadic eye movements and attentional control in Alzheimer’s disease. Arch Clin Neuropsychol 2018; 33(1): 1-13. doi: 10.1093/arclin/acx044 PMID: 28525567
  57. Opwonya J, Wang C, Jang KM, Lee K, Kim JI, Kim JU. Inhibitory control of saccadic eye movements and cognitive impairment in mild cognitive impairment. Front Aging Neurosci 2022; 14: 871432. doi: 10.3389/fnagi.2022.871432 PMID: 35478701
  58. Shakespeare TJ, Kaski D, Yong KXX, et al. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy. Brain 2015; 138(7): 1976-91. doi: 10.1093/brain/awv103 PMID: 25895507
  59. Lage C, López-García S, Bejanin A, et al. Distinctive oculomotor behaviors in Alzheimer’s disease and frontotemporal dementia. Front Aging Neurosci 2021; 12: 603790. doi: 10.3389/fnagi.2020.603790 PMID: 33613262
  60. Ciuffreda KJ, Tannen B. Eye movement basics for the clinician. Amsterdam: Elsevier 1995.
  61. Engbert R, Kliegl R. Microsaccades uncover the orientation of covert attention. Vision Res 2003; 43(9): 1035-45. doi: 10.1016/S0042-6989(03)00084-1 PMID: 12676246
  62. Nealson RL, Arrington LE, Fironzshahi N, et al. A constructivist lens of eye-tracking in special populations.International encyclopedia of education. (4th ed..). Amsterdam: Elsevier Ltd. 2023; pp. 414-22.
  63. Komogortsev OV, Gobert DV, Jayarathna S, Gowda SM, Gowda S. Standardization of automated analyses of oculomotor fixation and saccadic behaviors. IEEE Trans Biomed Eng 2010; 57(11): 2635-45. doi: 10.1109/TBME.2010.2057429 PMID: 20667803
  64. Nyström M, Holmqvist K. An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data. Behav Res Methods 2010; 42(1): 188-204. doi: 10.3758/BRM.42.1.188 PMID: 20160299
  65. Friedman L, Rigas I, Abdulin E, Komogortsev OV. A novel evaluation of two related and two independent algorithms for eye movement classification during reading. Behav Res Methods 2018; 50(4): 1374-97. doi: 10.3758/s13428-018-1050-7 PMID: 29766396
  66. Voloh B, Watson MR, König S, Womelsdorf T. MAD saccade: Statistically robust saccade threshold estimation via the median absolute deviation. J Eye Mov Res 2020; 12(8): 3. doi: 10.16910/jemr.12.8.3 PMID: 33828776
  67. König SD, Buffalo EA. A nonparametric method for detecting fixations and saccades using cluster analysis: Removing the need for arbitrary thresholds. J Neurosci Methods 2014; 227: 121-31. doi: 10.1016/j.jneumeth.2014.01.032 PMID: 24509130
  68. Santini T, Fuhl W, Kübler T, Kasneci E. Bayesian identification of fixations, saccades, and smooth pursuits. Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research. 14–17 March; New York, USA: 2016; pp. 163-70. doi: 10.1145/2857491.2857512
  69. Pekkanen J, Lappi O. A new and general approach to signal denoising and eye movement classification based on segmented linear regression. Sci Rep 2017; 7(1): 17726. doi: 10.1038/s41598-017-17983-x PMID: 29255207
  70. Komogortsev OV, Khan J. Kalman filtering in the design of eyegaze-guided computer interfaces. International Conference on Human-Computer Interaction (HCI 2007). 22-27 July 2007; Berlin, Heidelberg, China, . 2007; pp. 1-10.
  71. Sauter D, Martin BJ, Di Renzo N, Vomscheid C. Analysis of eye tracking movements using innovations generated by a Kalman filter. Med Biol Eng Comput 1991; 29(1): 63-9. doi: 10.1007/BF02446297 PMID: 2016922
  72. Salvucci DD, Goldberg JH. Identifying fixations and saccades in eye tracking protocols. Proceedings of the 2000 Symposium Eye Tracking Research. Application, Florida, USA. New York, USA: 2000; pp. 6-8 November; 71-8. doi: 10.1145/355017.355028
  73. Engbert R, Mergenthaler K. Microsaccades are triggered by low retinal image slip. Proc Natl Acad Sci USA 2006; 103(18): 7192-7. doi: 10.1073/pnas.0509557103 PMID: 16632611
  74. Zhu H, Salcudean S, Rohling R. The Neyman Pearson detection of microsaccades with maximum likelihood estimation of parameters. J Vis 2019; 19(13): 17. doi: 10.1167/19.13.17
  75. Bellet ME, Bellet J, Nienborg H, Hafed ZM, Berens P. Human-level saccade detection performance using deep neural networks. J Neurophysiol 2019; 121(2): 646-61. doi: 10.1152/jn.00601.2018 PMID: 30565968
  76. Dai W, Selesnick I, Rizzo JR, Rucker J, Hudson T. A parametric model for saccadic eye movement. 2016 IEEE Signal Processing in Medicine and Biology Symposium (SPMB). 03-03 December 2016; Philadelphia, PA, USA, . 2016. doi: 10.1109/SPMB.2016.7846860
  77. Dai W, Selesnick I, Rizzo JR, Rucker J, Hudson T. Detection of normal and slow saccades using implicit piecewise polynomial approximation. J Vis 2021; 21(6): 8. doi: 10.1167/jov.21.6.8
  78. Larsson L, Nyström M, Stridh M. Detection of saccades and postsaccadic oscillations in the presence of smooth pursuit. IEEE Trans Biomed Eng 2013; 60(9): 2484-93. doi: 10.1109/TBME.2013.2258918 PMID: 23625350
  79. Rizzo JR, Hudson TE, Dai W, et al. Rapid number naming in chronic concussion: Eye movements in the King–Devick test. Ann Clin Transl Neurol 2016; 3(10): 801-11. doi: 10.1002/acn3.345 PMID: 27752515
  80. Zemblys R, Niehorster DC, Komogortsev O, Holmqvist K. Using machine learning to detect events in eye-tracking data. Behav Res Methods 2018; 50(1): 160-81. doi: 10.3758/s13428-017-0860-3 PMID: 28233250
  81. Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 1964; 36(8): 1627-39. doi: 10.1021/ac60214a047
  82. Dai W, Selesnick I, Rizzo JR, Rucker J, Hudson T. A nonlinear generalization of the Savitzky-Golay filter and the quantitative analysis of saccades. J Vis 2017; 17(9): 10. doi: 10.1167/17.9.10

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers