hdWGCNA and Cellular Communication Identify Active NK Cell Subtypes in Alzheimer's Disease and Screen for Diagnostic Markers through Machine Learning


Cite item

Full Text

Abstract

Background:Alzheimer's disease (AD) is a recognized complex and severe neurodegenerative disorder, presenting a significant challenge to global health. Its hallmark pathological features include the deposition of β-amyloid plaques and the formation of neurofibrillary tangles. Given this context, it becomes imperative to develop an early and accurate biomarker model for AD diagnosis, employing machine learning and bioinformatics analysis.

Methods:In this study, single-cell data analysis was employed to identify cellular subtypes that exhibited significant differences between the diseased and control groups. Following the identification of NK cells, hdWGCNA analysis and cellular communication analysis were conducted to pinpoint NK cell subset with the most robust communication effects. Subsequently, three machine learning algorithms-LASSO, Random Forest, and SVM-RFE-were employed to jointly screen for NK cell subset modular genes highly associated with AD. A logistic regression diagnostic model was then designed based on these characterized genes. Additionally, a protein-protein interaction (PPI) networks of model genes was established. Furthermore, unsupervised cluster analysis was conducted to classify AD subtypes based on the model genes, followed by the analysis of immune infiltration in the different subtypes. Finally, Spearman correlation coefficient analysis was utilized to explore the correlation between model genes and immune cells, as well as inflammatory factors.

Results:We have successfully identified three genes (RPLP2, RPSA, and RPL18A) that exhibit a high association with AD. The nomogram based on these genes provides practical assistance in diagnosing and predicting patients' outcomes. The interconnected genes screened through PPI are intricately linked to ribosome metabolism and the COVID-19 pathway. Utilizing the expression of modular genes, unsupervised cluster analysis unveiled three distinct AD subtypes. Particularly noteworthy is subtype C3, characterized by high expression, which correlates with immune cell infiltration and elevated levels of inflammatory factors. Hence, it can be inferred that the establishment of an immune environment in AD patients is closely intertwined with the heightened expression of model genes.

Conclusion:This study has not only established a valuable diagnostic model for AD patients but has also delved deeply into the pivotal role of model genes in shaping the immune environment of individuals with AD. These findings offer crucial insights into early AD diagnosis and patient management strategies.

About the authors

Haoyang Wu

Clinical Medical College, Southwest Medical University

Email: info@benthamscience.net

Haiqing Chen

Clinical Medical College, Southwest Medical University

Email: info@benthamscience.net

Shengke Zhang

Clinical Medical College, Southwest Medical University

Email: info@benthamscience.net

Qingwen Hu

Clinical Medical College, Southwest Medical University

Email: info@benthamscience.net

Haotian Lai

Clinical Medical College, Southwest Medical University

Email: info@benthamscience.net

Claire Fuller

Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University

Email: info@benthamscience.net

Guanhu Yang

Department of Specialty Medicine, Ohio University

Author for correspondence.
Email: info@benthamscience.net

Hao Chi

Clinical Medical College, Southwest Medical University

Author for correspondence.
Email: info@benthamscience.net

Guobin Song

School of Stomatology, Southwest Medical University

Email: info@benthamscience.net

References

  1. De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV. Alzheimer’s Disease. Subcell Biochem 2012; 65: 329-52. doi: 10.1007/978-94-007-5416-4_14 PMID: 23225010
  2. Alzheimer’s disease facts and figures. Alzheimers Dement 2023; 19(4): 1598-695. doi: 10.1002/alz.13016 PMID: 36918389
  3. Trejo-Lopez JA, Yachnis AT, Prokop S. Neuropathology of Alzheimer’s Disease. Neurotherapeutics 2022; 19(1): 173-85. doi: 10.1007/s13311-021-01146-y PMID: 34729690
  4. Pettigrew C, Soldan A. Defining cognitive reserve and implications for cognitive aging. Curr Neurol Neurosci Rep 2019; 19(1): 1. doi: 10.1007/s11910-019-0917-z PMID: 30627880
  5. Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature 2004; 430(7000): 631-9. doi: 10.1038/nature02621 PMID: 15295589
  6. Song P, An J, Zou MH. Immune clearance of senescent cells to combat ageing and chronic diseases. Cells 2020; 9(3): 671. doi: 10.3390/cells9030671 PMID: 32164335
  7. Vida C, Martinez de Toda I, Garrido A, Carro E, Molina JA, De la Fuente M. Impairment of several immune functions and redox state in blood cells of alzheimer’s disease patients. relevant role of neutrophils in oxidative stress. Front Immunol 2018; 8: 1974. doi: 10.3389/fimmu.2017.01974 PMID: 29375582
  8. Brauning A, Rae M, Zhu G, et al. Aging of the immune system: Focus on natural killer cells phenotype and functions. Cells 2022; 11(6): 1017. doi: 10.3390/cells11061017 PMID: 35326467
  9. Lu Y, Li K, Hu Y, Wang X. Expression of immune related genes and possible regulatory mechanisms in alzheimer’s disease. Front Immunol 2021; 12: 768966. doi: 10.3389/fimmu.2021.768966 PMID: 34804058
  10. Zhang Y, Fung ITH, Sankar P, et al. Depletion of NK cells improves cognitive function in the alzheimer disease mouse model. J Immunol 2020; 205(2): 502-10. doi: 10.4049/jimmunol.2000037 PMID: 32503894
  11. Zenaro E, Pietronigro E, Bianca VD, et al. Neutrophils promote Alzheimer’s disease–like pathology and cognitive decline via LFA-1 integrin. Nat Med 2015; 21(8): 880-6. doi: 10.1038/nm.3913 PMID: 26214837
  12. Rai SN, Singh C, Singh A, Singh MP, Singh BK. Mitochondrial dysfunction: A potential therapeutic target to treat alzheimer’s disease. Mol Neurobiol 2020; 57(7): 3075-88. doi: 10.1007/s12035-020-01945-y PMID: 32462551
  13. Xu J, Gou S, Huang X, et al. Uncovering the impact of aggrephagy in the development of alzheimer’s disease: Insights into diagnostic and therapeutic approaches from machine learning analysis. Curr Alzheimer Res 2023; 20(9): 618-35. doi: 10.2174/0115672050280894231214063023 PMID: 38141185
  14. MacEachern SJ, Forkert ND. Machine learning for precision medicine. Genome 2021; 64(4): 416-25. doi: 10.1139/gen-2020-0131 PMID: 33091314
  15. Li R. Data mining and machine learning methods for dementia research. Methods Mol Biol 2018; 1750: 363-70. doi: 10.1007/978-1-4939-7704-8_25 PMID: 29512086
  16. Zhao S, Zhang L, Ji W, et al. Machine learning-based characterization of cuprotosis-related biomarkers and immune infiltration in Parkinson’s disease. Front Genet 2022; 13: 1010361. doi: 10.3389/fgene.2022.1010361 PMID: 36338988
  17. Li Z, Jiang X, Wang Y, Kim Y. Applied machine learning in Alzheimer’s disease research: Omics, imaging, and clinical data. Emerg Top Life Sci 2021; 5(6): 765-77. doi: 10.1042/ETLS20210249 PMID: 34881778
  18. Narayanan M, Huynh JL, Wang K, et al. Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases. Mol Syst Biol 2014; 10(7): 743. doi: 10.15252/msb.20145304 PMID: 25080494
  19. Maes OC, Schipper HM, Chertkow HM, Wang E. Methodology for discovery of Alzheimer’s disease blood-based biomarkers. J Gerontol Ser A 2009; 64A(6): 636-45. doi: 10.1093/gerona/glp045 PMID: 19366883
  20. Xu H, Jia J. Single-cell RNA sequencing of peripheral blood reveals immune cell signatures in Alzheimer’s disease. Front Immunol 2021; 12: 645666. doi: 10.3389/fimmu.2021.645666 PMID: 34447367
  21. Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data. Cell 2019; 177: 1888-902. doi: 10.1016/j.cell.2019.05.031
  22. Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 2015; 161(5): 1202-14. doi: 10.1016/j.cell.2015.05.002 PMID: 26000488
  23. Becht E, McInnes L, Healy J, et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol 2018. PMID: 30531897
  24. Aran D, Looney AP, Liu L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 2019; 20(2): 163-72. doi: 10.1038/s41590-018-0276-y PMID: 30643263
  25. Morabito S, Reese F, Rahimzadeh N, Miyoshi E, Swarup V. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. Cell Reports Methods 2023; 3(6): 100498. doi: 10.1016/j.crmeth.2023.100498 PMID: 37426759
  26. Samuel M, Fairlie R, Negin R, Emily M, Vivek S. High dimensional co-expression networks enable discovery of transcriptomic drivers in complex biological systems. bioRxiv 2022; 2022.2009.2022.509094.
  27. Xia P, Ouyang S, Shen R, et al. Macrophage-related testicular inflammation in individuals with idiopathic non-obstructive azoospermia: A single-cell analysis. Int J Mol Sci 2023; 24(10): 8819. doi: 10.3390/ijms24108819 PMID: 37240164
  28. Vu R, Jin S, Sun P, et al. Wound healing in aged skin exhibits systems-level alterations in cellular composition and cell- cell communication. Cell Rep 2022; 40(5): 111155. doi: 10.1016/j.celrep.2022.111155 PMID: 35926463
  29. Jin S, Guerrero-Juarez CF, Zhang L, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun 2021; 12(1): 1088. doi: 10.1038/s41467-021-21246-9 PMID: 33597522
  30. Fang Z, Tian Y, Sui C, et al. Single-cell transcriptomics of proliferative phase endometrium: Systems analysis of cell–cell communication network using cellchat. Front Cell Dev Biol 2022; 10: 919731. doi: 10.3389/fcell.2022.919731 PMID: 35938159
  31. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43(7): e47. doi: 10.1093/nar/gkv007 PMID: 25605792
  32. Franz M, Rodriguez H, Lopes C, et al. GeneMANIA update 2018. Nucleic Acids Res 2018; 46(W1): W60-4. doi: 10.1093/nar/gky311 PMID: 29912392
  33. Gene Ontology Consortium. Gene ontology consortium: Going forward. Nucleic Acids Res 2015; 43(Database issue): D1049-56. PMID: 25428369
  34. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017; 45(D1): D353-61. doi: 10.1093/nar/gkw1092 PMID: 27899662
  35. Chiesa M, Colombo GI, Piacentini L. DaMiRseq—an R/Bioconductor package for data mining of RNA-Seq data: Normalization, feature selection and classification. Bioinformatics 2018; 34(8): 1416-8. doi: 10.1093/bioinformatics/btx795 PMID: 29236969
  36. Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284-7. doi: 10.1089/omi.2011.0118 PMID: 22455463
  37. Engebretsen S, Bohlin J. Statistical predictions with glmnet. Clin Epigenetics 2019; 11(1): 123. doi: 10.1186/s13148-019-0730-1 PMID: 31443682
  38. Ishwaran H, Kogalur UB. Consistency of random survival forests. Stat Probab Lett 2010; 80(13-14): 1056-64. doi: 10.1016/j.spl.2010.02.020 PMID: 20582150
  39. Huang ML, Hung YH, Lee WM, Li RK, Jiang BR. SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier. Sci World J 2014; 2014: 1-10. doi: 10.1155/2014/795624 PMID: 25295306
  40. Song G, Peng G, Zhang J, et al. Uncovering the potential role of oxidative stress in the development of periodontitis and establishing a stable diagnostic model via combining single-cell and machine learning analysis. Front Immunol 2023; 14: 1181467. doi: 10.3389/fimmu.2023.1181467 PMID: 37475857
  41. Robin X, Turck N, Hainard A, et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011; 12(1): 77. doi: 10.1186/1471-2105-12-77 PMID: 21414208
  42. Hänzelmann S, Castelo R, Guinney J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013; 14(1): 7. doi: 10.1186/1471-2105-14-7 PMID: 23323831
  43. Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol 2018; 25(1): 59-70. doi: 10.1111/ene.13439 PMID: 28872215
  44. Tripathi PN, Srivastava P, Sharma P, et al. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg Chem 2019; 85: 82-96. doi: 10.1016/j.bioorg.2018.12.017 PMID: 30605887
  45. Srivastava P, Tripathi PN, Sharma P, et al. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur J Med Chem 2019; 163: 116-35. doi: 10.1016/j.ejmech.2018.11.049 PMID: 30503937
  46. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 2006; 112(4): 389-404. doi: 10.1007/s00401-006-0127-z PMID: 16906426
  47. Hyman BT, Phelps CH, Beach TG, et al. National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 2012; 8(1): 1-13. doi: 10.1016/j.jalz.2011.10.007 PMID: 22265587
  48. Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 2016; 12(4): 459-509. doi: 10.1016/j.jalz.2016.03.001 PMID: 27570871
  49. Wang JH, Wu YJ, Tee BL, Lo RY. Medical comorbidity in Alzheimer’s disease: A nested case-control study. J Alzheimers Dis 2018; 63(2): 773-81. doi: 10.3233/JAD-170786 PMID: 29660933
  50. Liu JL, Hlavka JP, Hillestad R, Mattke S. Assessing the Preparedness of the US Health Care System Infrastructure for an Alzheimer’s Treatment. Santa Monica, CA: RAND Corporation 2017. doi: 10.7249/RR2272
  51. Graff-Radford J, Yong KXX, Apostolova LG, et al. New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol 2021; 20(3): 222-34. doi: 10.1016/S1474-4422(20)30440-3 PMID: 33609479
  52. Tian Y, Lu Y, Cao Y, et al. Identification of diagnostic signatures associated with immune infiltration in Alzheimer’s disease by integrating bioinformatic analysis and machine-learning strategies. Front Aging Neurosci 2022; 14: 919614. doi: 10.3389/fnagi.2022.919614 PMID: 35966794
  53. Heneka MT, Carson MJ, Khoury JE, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015; 14(4): 388-405. doi: 10.1016/S1474-4422(15)70016-5 PMID: 25792098
  54. Solerte SB, Cravello L, Ferrari E, Fioravanti M. Overproduction of IFN-gamma and TNF-alpha from natural killer (NK) cells is associated with abnormal NK reactivity and cognitive derangement in Alzheimer’s disease. Ann N Y Acad Sci 2000; 917(1): 331-40. doi: 10.1111/j.1749-6632.2000.tb05399.x PMID: 11268360
  55. Liu Z, Li H, Pan S. Discovery and validation of key biomarkers based on immune infiltrates in Alzheimer’s disease. Front Genet 2021; 12: 658323. doi: 10.3389/fgene.2021.658323
  56. Brassart B, Da Silva J, Donet M, et al. Tumour cell blebbing and extracellular vesicle shedding: Key role of matrikines and ribosomal protein SA. Br J Cancer 2019; 120(4): 453-65. doi: 10.1038/s41416-019-0382-0 PMID: 30739912
  57. Suzuki M, Tezuka K, Handa T, et al. Upregulation of ribosome complexes at the blood-brain barrier in Alzheimer’s disease patients. J Cereb Blood Flow Metab 2022; 42(11): 2134-50. doi: 10.1177/0271678X221111602 PMID: 35766008
  58. Da Costa Dias B, Jovanovic K, Gonsalves D, et al. The 37kDa/67kDa Laminin Receptor acts as a receptor for Aβ42 internalization. Sci Rep 2014; 4(1): 5556. doi: 10.1038/srep05556 PMID: 24990253
  59. Jovanovic K, Gonsalves D, Da Costa Dias B, et al. Anti-LRP/LR specific antibodies and shRNAs impede amyloid beta shedding in Alzheimer’s disease. Sci Rep 2013; 3(1): 2699. doi: 10.1038/srep02699 PMID: 24048412
  60. Yang HW, Kim HD, Kim TS, Kim J. Senescent cells differentially translate senescence-related mrnas via ribosome heterogeneity. J Gerontol A Biol Sci Med Sci 2019; 74(7): 1015-24. doi: 10.1093/gerona/gly228 PMID: 30285098
  61. Chen MB, Yang AC, Yousef H, et al. Brain endothelial cells are exquisite sensors of age-related circulatory cues. Cell Rep 2020; 30(13): 4418-4432.e4. doi: 10.1016/j.celrep.2020.03.012 PMID: 32234477
  62. Stein KC, Morales-Polanco F, van der Lienden J, Rainbolt TK, Frydman J. Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis. Nature 2022; 601(7894): 637-42. doi: 10.1038/s41586-021-04295-4 PMID: 35046576
  63. Rai SN, Zahra W, Birla H, Singh SS, Singh SP. Commentary: Mild endoplasmic reticulum stress ameliorates lpopolysaccharide-induced neuroinflammation and cognitive impairment via regulation of microglial polarization. Front Aging Neurosci 2018; 10: 192. doi: 10.3389/fnagi.2018.00192 PMID: 29988480
  64. Wang ZB, Ma YH, Sun Y, Tan L, Wang HF, Yu JT. Interleukin-3 is associated with sTREM2 and mediates the correlation between amyloid-β and tau pathology in Alzheimer’s disease. J Neuroinflammation 2022; 19(1): 316. doi: 10.1186/s12974-022-02679-5 PMID: 36578067
  65. Chen X, Kendler KS. Interleukin 3 and Schizophrenia. Am J Psychiatry 2008; 165(1): 13-4. doi: 10.1176/appi.ajp.2007.07121868 PMID: 18178751
  66. Fotuhi M, Mian A, Meysami S, Raji CA. Neurobiology of COVID-19. J Alzheimers Dis 2020; 76(1): 3-19. doi: 10.3233/JAD-200581 PMID: 32538857
  67. Xia X, Wang Y, Zheng J. COVID-19 and Alzheimer’s disease: How one crisis worsens the other. Transl Neurodegener 2021; 10(1): 15. doi: 10.1186/s40035-021-00237-2 PMID: 33941272
  68. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in wuhan, China. JAMA Neurol 2020; 77(6): 683-90. doi: 10.1001/jamaneurol.2020.1127 PMID: 32275288

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers