Graph Convolutional Capsule Regression (GCCR): A Model for Accelerated Filtering of Novel Potential Candidates for SARS-CoV-2 based on Binding Affinity


Cite item

Full Text

Abstract

Background:There has been a growing interest in discovering a viable drug for the new coronavirus (SARS-CoV-2) since the beginning of the pandemic. Protein-ligand interaction studies are a crucial step in the drug discovery process, as it helps us narrow the search space for potential ligands with high drug-likeness. Derivatives of popular drugs like Remdesivir generated through tools employing evolutionary algorithms are usually considered potential candidates. However, screening promising molecules from such a large search space is difficult. In a conventional screening process, for each ligand-target pair, there are time-consuming interaction studies that use docking simulations before downstream tasks like thermodynamic, kinetic, and electrostatic-potential evaluation.

Objective:This work aims to build a model based on deep learning applied over the graph structure of the molecules to accelerate the screening process for novel potential candidates for SARS-CoV-2 by predicting the binding energy of the protein-ligand complex.

Methods:In this work, ‘Graph Convolutional Capsule Regression’ (GCCR), a model which uses Capsule Neural Networks (CapsNet) and Graph Convolutional Networks (GCN) to predict the binding energy of a protein-ligand complex is being proposed. The model’s predictions were further validated with kinetic and free energy studies like Molecular Dynamics (MD) for kinetic stability and MM/GBSA analysis for free energy calculations.

Results:The GCCR showed an RMSE value of 0.0978 for 81.3% of the concordance index. The RMSE of GCCR converged around the iteration of just 50 epochs scoring a lower RMSE than GCN and GAT. When training with Davis Dataset, GCCR gave an RMSE score of 0.3806 with a CI score of 87.5%.

Conclusion:The proposed GCCR model shows great potential in improving the screening process based on binding affinity and outperforms baseline machine learning models like DeepDTA, KronRLS, Sim- Boost, and other Graph Neural Networks (GNN) based models like Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT).

About the authors

Aravind Krishnan

Department of Computer Science and Engineering, Amrita School of Computing, Coimbatore, Amrita Vishwa Vidyapeetham,

Email: info@benthamscience.net

Dayanand Vinod

Department of Computer Science and Engineering, Amrita School of Computing, Coimbatore, Amrita Vishwa Vidyapeetham,

Author for correspondence.
Email: info@benthamscience.net

References

  1. World Health Organization. Global Situation of COVID-19. 2022. Available from: https://covid19.who.int/
  2. Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-An update on the status. Mil. Med. Res., 2020, 7(1), 11. doi: 10.1186/s40779-020-00240-0
  3. Hillen, H.S.; Kokic, G.; Farnung, L.; Dienemann, C.; Tegunov, D.; Cramer, P. Structure of replicating SARS-CoV-2 polymerase. Nature, 2020, 584(7819), 154-156. doi: 10.1038/s41586-020-2368-8 PMID: 32438371
  4. Zhou, G.; Stewart, L.; Reggiano, G.; DiMaio, F. Computational drug repurposing studies on SARS-CoV-2 protein targets. ChemRxiv, 2020. doi: 10.26434/chemrxiv.12315437.v1
  5. Selvaraj, J.; Sundar P, S.; Rajan, L.; Selvaraj, D.; Palanisamy, D.; Namboori PK, K.; Mohankumar, S.K. Identification of (2 R, 3 R)-2-(3,4-dihydroxyphenyl)chroman-3-yl-3,4,5-trihydroxy benzoate as multiple inhibitors of SARS-CoV-2 targets; a systematic molecular modelling approach. RSC Advances, 2021, 11(22), 13051-13060. doi: 10.1039/D1RA01603B PMID: 35423848
  6. Pahikkala, T.; Airola, A.; Pietilä, S.; Shakyawar, S.; Szwajda, A.; Tang, J.; Aittokallio, T. Toward more realistic drug-target interaction predictions. Brief. Bioinform., 2015, 16(2), 325-337. doi: 10.1093/bib/bbu010 PMID: 24723570
  7. He, T.; Heidemeyer, M.; Ban, F.; Cherkasov, A.; Ester, M. SimBoost: A read-across approach for predicting drug-target binding affinities using gradient boosting machines. J. Cheminform., 2017, 9(1), 24. doi: 10.1186/s13321-017-0209-z PMID: 29086119
  8. Öztürk, H.; Özgür, A.; Ozkirimli, E. DeepDTA: Deep drug-target binding affinity prediction. Bioinformatics, 2018, 34(17), i821-i829. doi: 10.1093/bioinformatics/bty593 PMID: 30423097
  9. Ioannidis, V.N.; Marques, A.G.; Giannakis, G.B. Graph Neural Networks for Predicting Protein Functions. In. 2019 IEEE 8th International Workshop on Computational Advances in MultiSensor Adaptive Processing (CAMSAP), 15-18 December 2019Le gosier, Guadeloupe 2019, pp. 221-225. doi: 10.1109/CAMSAP45676.2019.9022646
  10. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and applications. AI Open, 2020, 1, 57-81. doi: 10.1016/j.aiopen.2021.01.001
  11. David, L.; Thakkar, A.; Mercado, R.; Engkvist, O. Molecular representations in AI-driven drug discovery: A review and practical guide. J. Cheminform., 2020, 12(1), 56. doi: 10.1186/s13321-020-00460-5 PMID: 33431035
  12. Scarselli, F.; Gori, M.; Hagenbuchner, M.; Monfardini, G.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw., 2009, 20(1), 61-80. doi: 10.1109/TNN.2008.2005605 PMID: 19068426
  13. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural Message Passing for Quantum Chemistry. In: International conference on machine learning; , 2017; pp. 1263-1272.
  14. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv, 2016. doi: 10.48550/arXiv.1609.02907
  15. Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and locally connected networks on graphs. arXiv, 2013. doi: 10.48550/arXiv.1312.6203
  16. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. Adv. Neural Inf. Process. Syst., 2016, 29 Available from: https://proceedings.neurips.cc/paper/2016/hash/04df4d434d481c5bb723be1b6df1ee65-Abstract.html
  17. Hinton, G.E.; Krizhevsky, A.; Wang, S.D. Transforming Auto-encoders. In: artificial neural networks and machine learning- ICANN 2011. ICANN 2011; Honkela, T.; Duch, W.; Girolami, M.; Kaski, S., Eds.; Springer: Berlin, Heidelberg, 2011; pp. 44-51. doi: 10.1007/978-3-642-21735-7_6
  18. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic routing between capsules. Adv. Neural Inf. Process. Syst., 2017, 30.
  19. Elnaggar, A.; Heinzinger, M.; Dallago, C.; Rihawi, G.; Wang, Y.; Jones, L.; Gibbs, T.; Feher, T.; Angerer, C.; Steinegger, M. ProtTrans: Towards cracking the language of Life’s code through self-supervised deep learning and high performance computing. arXiv, 2020. doi: 10.48550/arXiv.2007.06225
  20. Davis, M.I.; Hunt, J.P.; Herrgard, S.; Ciceri, P.; Wodicka, L.M.; Pallares, G.; Hocker, M.; Treiber, D.K.; Zarrinkar, P.P. Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol., 2011, 29(11), 1046-1051. doi: 10.1038/nbt.1990 PMID: 22037378
  21. Pushkaran, A.C.; Nath EN, P.; Melge, A.R.; Puthiyedath, R.; Mohan, C.G. A phytochemical-based medication search for the SARS-CoV-2 infection by molecular docking models towards spike glycoproteins and main proteases. RSC Advances, 2021, 11(20), 12003-12014. doi: 10.1039/D0RA10458B PMID: 35423778
  22. Haridas, M.; Sasidhar, V.; Nath, P.; Abhithaj, J.; Sabu, A.; Rammanohar, P. Compounds of citrus medica and zingiber officinale for COVID-19 inhibition: In silico evidence for cues from ayurveda. Futur. J. Pharm. Sci., 2021, 7, 1-9. doi: 10.1186/s43094-020-00171-6 PMID: 33457429
  23. Naresh, P.; Selvaraj, A.; Shyam Sundar, P.; Murugesan, S.; Sathianarayanan, S.; Namboori, P.K. Targeting a conserved pocket (n-octyl-β-D–glucoside) on the dengue virus envelope protein by small bioactive molecule inhibitors. J. Biomol. Struct. Dyn., 2020, 40(11), 4866-4878. doi: 10.1080/07391102.2020.1862707 PMID: 33345726
  24. Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model., 2015, 55(2), 460-473. doi: 10.1021/ci500588j PMID: 25558886
  25. Kukol, A. Molecular modeling of proteins; Springer: Totowa, New Jersey, 2008, p. 443. doi: 10.1007/978-1-59745-177-2
  26. Gaillard, T. Evaluation of autodock and autodock vina on the CASF-2013 benchmark. J. Chem. Inf. Model., 2018, 58(8), 1697-1706. doi: 10.1021/acs.jcim.8b00312 PMID: 29989806
  27. Deng, C.; Zhang, L.; Cen, Y. Retrieval of chemical oxygen demand through modified capsule network based on hyperspectral data. Appl. Sci., 2019, 9(21), 4620. doi: 10.3390/app9214620
  28. Smith, T.F.; Waterman, M.S. Identification of common molecular subsequences. J. Mol. Biol., 1981, 147(1), 195-197. doi: 10.1016/0022-2836(81)90087-5 PMID: 7265238
  29. Knutson, C.; Bontha, M.; Bilbrey, J.A.; Kumar, N. Decoding the protein-ligand interactions using parallel graph neural networks. Sci. Rep., 2022, 12(1), 7624. doi: 10.1038/s41598-022-10418-2 PMID: 35538084
  30. Gonen, M.; Heller, G. Concordance probability and discriminatory power in proportional hazards regression. Biometrika, 2005, 92(4), 965-970. doi: 10.1093/biomet/92.4.965

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers