Screening of Inhibitors against Idiopathic Pulmonary Fibrosis: Few-shot Machine Learning and Molecule Docking based Drug Repurposing


Cite item

Full Text

Abstract

Introduction:Idiopathic pulmonary fibrosis is a chronic progressive disorder and is diagnosed as post-COVID fibrosis. Idiopathic pulmonary fibrosis has no effective treatment because of the low therapeutic effects and side effects of currently available drugs.

Aim:The aim is to screen new inhibitors against idiopathic pulmonary fibrosis from traditional Chinese medicines.

Methods:Few-shot-based machine learning and molecule docking were used to predict the potential activities of candidates and calculate the ligand-receptor interactions. In vitro A549 cell model was taken to verify the effects of the selected leads on idiopathic pulmonary fibrosis.

Results:A logistic regression classifier model with an accuracy of 0.82 was built and, combined with molecule docking, used to predict the activities of candidates. 6 leads were finally screened out and 5 of them were in vitro experimentally verified as effective inhibitors against idiopathic pulmonary fibrosis.

Conclusion:Herbacetin, morusin, swertiamarin, vicenin-2, and vitexin were active inhibitors against idiopathic pulmonary fibrosis. Swertiamarin exhibited the highest anti-idiopathic pulmonary fibrosis effect and should be further in vivo investigated for its activity.

About the authors

Jun Chang

College of Life Science, Jiangxi Science & Technology Normal University

Author for correspondence.
Email: info@benthamscience.net

Shaoqing Zou

College of Life Science, Jiangxi Science & Technology Normal University

Email: info@benthamscience.net

Subo Xu

College of Life Science, Jiangxi Science & Technology Normal University

Email: info@benthamscience.net

Yiwen Xiao

College of Life Science, Jiangxi Science & Technology Normal University

Email: info@benthamscience.net

Du Zhu

College of Life Science, Jiangxi Science & Technology Normal University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Wilson, M.S.; Wynn, T.A. Pulmonary fibrosis: Pathogenesis, etiology and regulation. Mucosal Immunol., 2009, 2(2), 103-121. doi: 10.1038/mi.2008.85 PMID: 19129758
  2. Bazdyrev, E.; Rusina, P.; Panova, M.; Novikov, F.; Grishagin, I.; Nebolsin, V. Lung fibrosis after COVID-19: Treatment prospects. Pharmaceuticals, 2021, 14(8), 807-821. doi: 10.3390/ph14080807 PMID: 34451904
  3. Murray, L.A.; Rubinowitz, A.; Herzog, E.L. Interstitial lung disease. Curr. Opin. Rheumatol., 2012, 24(6), 656-662. doi: 10.1097/BOR.0b013e3283588de4 PMID: 22955020
  4. Glass, D.S.; Grossfeld, D.; Renna, H.A.; Agarwala, P.; Spiegler, P.; DeLeon, J.; Reiss, A.B. Idiopathic pulmonary fibrosis: Current and future treatment. Clin. Respir. J., 2022, 16(2), 84-96. doi: 10.1111/crj.13466 PMID: 35001525
  5. Jin, H. Imrecoxib inhibits paraquat-induced pulmonary fibrosis through the NF-κB/snail signaling pathway. Comput. Math. Methods Med., 2020, 2020, 1-9. doi: 10.1155/2020/6374014 PMID: 33123215
  6. Ekins, S.; Gerlach, J.; Zorn, K.M.; Antonio, B.M.; Lin, Z.; Gerlach, A. Repurposing approved drugs as inhibitors of Kv7.1 and Nav1.8 to Treat Pitt Hopkins syndrome. Pharm. Pharm. Res., 2019, 36(9), 137. doi: 10.1007/s11095-019-2671-y PMID: 31332533
  7. Dudley, J.T.; Deshpande, T.; Butte, A.J. Exploiting drug-disease relationships for computational drug repositioning. Brief. Bioinform., 2011, 12(4), 303-311. doi: 10.1093/bib/bbr013 PMID: 21690101
  8. Baker, N.C.; Ekins, S.; Williams, A.J.; Tropsha, A. A bibliometric review of drug repurposing. Drug Discov. Today, 2018, 23(3), 661-672. doi: 10.1016/j.drudis.2018.01.018 PMID: 29330123
  9. Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
  10. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. PMID: 19499576
  11. O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33. doi: 10.1186/1758-2946-3-33 PMID: 21982300
  12. Kim, D.J.; Lee, M.H.; Liu, K.; Lim, D.Y.; Roh, E.; Chen, H.; Kim, S.H.; Shim, J.H.; Kim, M.O.; Li, W.; Ma, F.; Fredimoses, M.; Bode, A.M.; Dong, Z. Herbacetin suppresses cutaneous squamous cell carcinoma and melanoma cell growth by targeting AKT and ODC. Carcinogenesis, 2017, 38(11), 1136-1146. doi: 10.1093/carcin/bgx082 PMID: 29029040
  13. Li, L.; Sapkota, M.; Kim, S.; Soh, Y. Herbacetin inhibits inducible nitric oxide synthase via JNK and nuclear factor-κB in LPS-stimulated RAW264.7 cells. Eur. J. Pharmacol., 2015, 765, 115-123. doi: 10.1016/j.ejphar.2015.08.032 PMID: 26297979
  14. Jin, S.; Ha, H.; Shin, H.K.; Seo, C.S. Anti-allergic and anti-inflammatory effects of kuwanon G and morusin on MC/9 mast cells and Ha-CaT keratinocytes. Molecules, 2019, 24(2), 265. doi: 10.3390/molecules24020265 PMID: 30642008
  15. Chen, C.; Wang, J.; Chen, J.; Zhou, L.; Wang, H.; Chen, J.; Xu, Z.; Zhu, S.; Liu, W.; Yu, R.; Lu, J.; Luo, H.; Chen, M.; Chen, W. Morusin alleviates mycoplasma pneumonia via the inhibition of Wnt/β-catenin and NF-κB signaling. Biosci. Rep., 2019, 39(6), BSR20190190. doi: 10.1042/BSR20190190 PMID: 31171712
  16. Martins, B.A.; Sande, D.; Solares, M.D.; Takahashi, J.A. Antioxidant role of morusin and mulberrofuran B in ethanol extract of Morus alba roots. Nat. Prod. Res., 2021, 35(24), 5993-5996. doi: 10.1080/14786419.2020.1810036 PMID: 32840147
  17. Jaishree, V.; Badami, S. Antioxidant and hepatoprotective effect of swertiamarin from Enicostemma axillare against d-galactosamine induced acute liver damage in rats. J. Ethnopharmacol., 2010, 130(1), 103-106. doi: 10.1016/j.jep.2010.04.019 PMID: 20420896
  18. Vaijanathappa, J.; Badami, S. Antiedematogenic and free radical scavenging activity of swertiamarin isolated from Enicostemma axillare. Planta Med., 2009, 75(1), 12-17. doi: 10.1055/s-0028-1088333 PMID: 19006050
  19. Wu, X.; Gu, Y.; Li, L. The anti-hyperplasia, anti-oxidative and anti-inflammatory properties of Qing Ye Dan and swertiamarin in testosterone-induced benign prostatic hyperplasia in rats. Toxicol. Lett., 2017, 265, 9-16. doi: 10.1016/j.toxlet.2016.11.011 PMID: 27866977
  20. Seo, K.H.; Park, M.J.; Ra, J.E.; Han, S.I.; Nam, M.H.; Kim, J.H.; Lee, J.H.; Seo, W.D. Saponarin from barley sprouts inhibits NF-κB and MAPK on LPS-induced RAW 264.7 cells. Food Funct., 2014, 5(11), 3005-3013. doi: 10.1039/C4FO00612G PMID: 25238253
  21. Min, S.Y.; Park, C.H.; Yu, H.W.; Park, Y.J. Anti-inflammatory and anti-allergic fffects of saponarin and its impact on signaling pathways of RAW 264.7, RBL-2H3, and HaCaT cells. Int. J. Mol. Sci., 2021, 22(16), 8431. doi: 10.3390/ijms22168431 PMID: 34445132
  22. Kamiyama, M.; Shibamoto, T. Flavonoids with potent antioxidant activity found in young green barley leaves. J. Agric. Food Chem., 2012, 60(25), 6260-6267. doi: 10.1021/jf301700j PMID: 22681491
  23. Vitcheva, V.; Simeonova, R.; Krasteva, I.; Yotova, M.; Nikolov, S.; Mitcheva, M. Hepatoprotective effects of saponarin, isolated from Gypsophila trichotoma Wend. on cocaine-induced oxidative stress in rats. Redox Rep., 2011, 16(2), 56-61. doi: 10.1179/174329211X12989133691530 PMID: 21722413
  24. Duan, X.; Wu, T.; Liu, T.; Yang, H.; Ding, X.; Chen, Y.; Mu, Y. Vicenin-2 ameliorates oxidative damage and photoaging via modulation of MAPKs and MMPs signaling in UVB radiation exposed human skin cells. J. Photochem. Photobiol. B, 2019, 190, 76-85. doi: 10.1016/j.jphotobiol.2018.11.018 PMID: 30502588
  25. Yang, D.; Zhang, X.; Zhang, W.; Thamaraiselvan, R. Vicenin-2 inhibits Wnt/β-catenin signaling and induces apoptosis in HT-29 human colon cancer cell line. Drug Des. Devel. Ther., 2018, 12, 1303-1310. doi: 10.2147/DDDT.S149307 PMID: 29849451
  26. Yin, Y.; Ye, L.; Niu, Z.; Fang, W. Anti-inflammatory effects of Vicenin-2 on dextran sulfate sodium-induced colitis in mice. Drug Dev. Res., 2019, 80(5), 546-555. doi: 10.1002/ddr.21529 PMID: 30972795
  27. Rosa, S.I.G.; Rios-Santos, F.; Balogun, S.O.; Martins, D.T.O. Vitexin reduces neutrophil migration to inflammatory focus by down-regulating pro-inflammatory mediators via inhibition of p38, ERK1/2 and JNK pathway. Phytomedicine, 2016, 23(1), 9-17. doi: 10.1016/j.phymed.2015.11.003 PMID: 26902402
  28. Chen, Y.; Yang, J.; Huang, Z.; Yin, B.; Umar, T.; Yang, C.; Zhang, X.; Jing, H.; Guo, S.; Guo, M.; Deng, G.; Qiu, C. Vitexin Mitigates Staphylococcus aureus-induced mastitis via regulation of ROS/ER stress/NF-kappa B/MAPK pathway. Oxid. Med. Cell. Longev., 2022, 2022, 1-20. doi: 10.1155/2022/7977433 PMID: 35795861
  29. Li, S.; Lv, H.; Chen, Y.; Song, H.; Zhang, Y.; Wang, S.; Luo, L.; Guan, X. N-trimethyl chitosan coated targeting nanoparticles improve the oral bioavailability and antioxidant activity of vitexin. Carbohydr. Polym., 2022, 286, 119273. doi: 10.1016/j.carbpol.2022.119273 PMID: 35337500
  30. Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; Zhao, S. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov., 2019, 18(6), 463-477. doi: 10.1038/s41573-019-0024-5 PMID: 30976107
  31. Yaseen, B.T.; Kurnaz, S. Drug-target interaction prediction using artificial intelligence. Appl. Nanosci., 2021, 195, 2.
  32. Xue, L.; Godden, J.W.; Bajorath, J. Mini-fingerprints for virtual screening: Design principles and generation of novel prototypes based on information theory. SAR QSAR Environ. Res., 2003, 14(1), 27-40. doi: 10.1080/1062936021000058764 PMID: 12688414
  33. Matsuyama, Y.; Ishida, T. Stacking multiple molecular fingerprints for improving ligand-based virtual screening. Cham; Springer International Publishing: Berlin, 2018.
  34. Kim, H.; Nam, H. hERG-Att: Self-attention-based deep neural network for predicting hERG blockers. Comput. Biol. Chem., 2020, 87, 107286. doi: 10.1016/j.compbiolchem.2020.107286 PMID: 32531518

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers