A New Optimized Hybridization Approach for in silico High Throughput Molecular Docking on FPGA Platform


Cite item

Full Text

Abstract

Background:The development process of a new drug should be a subject of continuous evolution and rapid improvement as drugs are essential to treat a wide range of diseases of which many are life-threatening. The advances in technology resulted in a novel track in drug discovery and development known as in silico drug design. The molecular docking phase plays a vital role in in silico drug development process. In this phase, thousands of 3D conformations of both the ligand and receptor are generated and the best conformations that create the most stable drug-receptor complex are determined. The speed in finding accurate and high-quality complexes depends on the efficiency of the search function in the molecular docking procedure.

Objective:The objective of this research is to propose and implement a novel hybrid approach called hABCDE to replace the EMC searching part inside the BUDE docking algorithm. This helps in reaching the best solution in a much accelerated time and higher solution quality compared to using the ABC and DE algorithms separately.

Methods:In this work, we have employed a new approach of hybridization between the Artificial Bee Colony (ABC) algorithm and the Differential Evolution (DE) algorithm as an alternative searching part of the Bristol University Docking Engine (BUDE) in order to accelerate the search for higher quality solutions. Moreover, the proposed docking approach was implemented on Field Programmable Gate Array (FPGA) parallel platform using Vivado High-Level Synthesis Tool (HLST) in order to optimize and enhance the execution time and overall efficiency. The NDM-1 protein was used as a model receptor in our experiments to demonstrate the efficiency of our approach.

Results:The NDM-1 protein was used as a model receptor in our experiments to demonstrate the efficiency of our approach. The results showed that the execution time for the BUDE with the new proposed hybridization approach was improved by 9,236 times.

Conclusion:Our novel approach was significantly effective to improve the functionality of docking algorithms (Bristol University Docking Engine (BUDE)).

About the authors

Amin Jarrah

Department of Computer Engineering, Hijjawi Faculty for Engineering Technology,, Yarmouk University

Author for correspondence.
Email: info@benthamscience.net

Jawad Lababneh

Department of Computer Engineering, Hijjawi Faculty for Engineering Technology,, Yarmouk University

Email: info@benthamscience.net

References

  1. Arwansyah, A.; Arif, A.R.; Syahputra, G.; Sukarti, S.; Kurniawan, I. Theoretical studies of Thiazolyl-Pyrazoline derivatives as promising drugs against malaria by QSAR modelling combined with molecular docking and molecular dynamics simulation. Mol. Simul., 2021, 47(12), 988-1001. doi: 10.1080/08927022.2021.1935926
  2. Sawant, S.; Patil, R.; Khawate, M.; Zambre, V.; Shilimkar, V.; Jagtap, S. Computational assessment of select antiviral phytochemicals as potential SARS-CoV-2 main protease inhibitors: molecular dynamics guided ensemble docking and extended molecular dynamics. in silico Pharmacol., 2021, 9(1), 44. doi: 10.1007/s40203-021-00107-9 PMID: 34306960
  3. Dong, D.; Xu, Z.; Zhong, W.; Peng, S. Parallelization of molecular docking: A review. Curr. Top. Med. Chem., 2018, 18(12), 1015-1028. doi: 10.2174/1568026618666180821145215 PMID: 30129415
  4. Sadybekov, A.A.; Sadybekov, A.V.; Liu, Y.; Iliopoulos-Tsoutsouvas, C.; Huang, X.P.; Pickett, J.; Houser, B.; Patel, N.; Tran, N.K.; Tong, F.; Zvonok, N.; Jain, M.K.; Savych, O.; Radchenko, D.S.; Nikas, S.P.; Petasis, N.A.; Moroz, Y.S.; Roth, B.L.; Makriyannis, A.; Katritch, V. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. Nature, 2022, 601(7893), 452-459. doi: 10.1038/s41586-021-04220-9 PMID: 34912117
  5. Mtemeli, F.L.; Ndlovu, J.; Mugumbate, G.; Makwikwi, T.; Shoko, R. Advances in schistosomiasis drug discovery based on natural products. All Life, 2022, 15(1), 608-623. doi: 10.1080/26895293.2022.2080281
  6. Zhao, L.; Ciallella, H.L.; Aleksunes, L.M.; Zhu, H. Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling. Drug Discov. Today, 2020, 25(9), 1624-1638. doi: 10.1016/j.drudis.2020.07.005 PMID: 32663517
  7. Kang, Y. MetaMap: Supporting visual metaphor ideation through multi-dimensional example-based exploration. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 2021. doi: 10.1145/3411764.3445325
  8. Sahu, V.S.D.M.; Samal, P.; Panigrahi, C.K. Application of Differential Evolution Algorithm to Optimal Control Problem with State Variable Constraints. 2020 IEEE 17th India Council International Conference (INDICON), IEEE, 2020. New Delhi, India
  9. Xiang, W.; Ma, S.; An, M. hABCDE: A hybrid evolutionary algorithm based on artificial bee colony algorithm and differential evolution. Appl. Math. Comput., 2014, 238, 370-386. doi: 10.1016/j.amc.2014.03.055
  10. Jadon, S.S.; Tiwari, R.; Sharma, H.; Bansal, J.C. Hybrid artificial bee colony algorithm with differential evolution. Appl. Soft Comput., 2017, 58, 11-24. doi: 10.1016/j.asoc.2017.04.018
  11. Yang, J.; Li, W-T.; Shi, X-W.; Xin, L.; Yu, J-F. A hybrid ABC-DE algorithm and its application for time modulated array s pattern synthesis; , 2013, 61, p. 5485-5495. doi: 10.1109/TAP.2013.2279093
  12. Han, Y-Y.; Gong, D.; Sun, X. A discrete artificial bee colony algorithm incorporating differential evolution for the flow-shop scheduling problem with blocking. In: Engineering Optimization, 47(7), 927-946. doi: 10.1080/0305215X.2014.928817
  13. Li, Y.; Wang, Y.; Li, B. A hybrid artificial bee colony assisted differential evolution algorithm for optimal reactive power flow. Int. J. Electr. Power Energy Syst., 2013, 52, 25-33. doi: 10.1016/j.ijepes.2013.03.016
  14. Li, X.; Yin, M. Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dyn., 2014, 77, 61-71. doi: 10.1007/s11071-014-1273-9
  15. Zorarpacı E.; Özel, S.A. A hybrid approach of differential evolution and artificial bee colony for feature selection. Expert Syst. Appl., 2016, 62, 91-103. doi: 10.1016/j.eswa.2016.06.004
  16. Zhou, J.; Yao, X. DE-caABC: Differential evolution enhanced context-aware artificial bee colony algorithm for service composition and optimal selection in cloud manufacturing illustrate the application. 2016, 90, 1085-1103. doi: 10.1007/s00170-016-9455-x
  17. Ustun, D.; Akdagli, A. Design of band–notched UWB antenna using a hybrid optimization based on ABC and DE algorithms AEU-Int. J. Electron. Commun., 2018, 87, 10-21. doi: 10.1016/j.aeue.2018.02.001
  18. Aslan, S.; Badem, H.; Karaboga, D. Improved quick artificial bee colony (iqABC) algorithm for global optimization. Soft Comput., 2019, 23(24), 13161-13182. doi: 10.1007/s00500-019-03858-y
  19. Awad, N.H.; Ali, M.Z.; Mallipeddi, R.; Suganthan, P.N. An efficient Differential Evolution algorithm for stochastic OPF based active–reactive power dispatch problem considering renewable generators. Appl. Soft Comput., 2019, 76, 445-458. doi: 10.1016/j.asoc.2018.12.025
  20. Karaboga, D.; Bahriye, A. A comparative study of Artificial Bee Colony algorithm. In: Applied Mathematics and Computation., 2009, 214(1), 108-132.
  21. Storn, R.; Price, K. Differential Evolution - A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim., 1997, 11(4), 341-359. doi: 10.1023/A:1008202821328
  22. McIntosh-Smith, S.; Price, J.; Sessions, R.B.; Ibarra, A.A. High performance in silico virtual drug screening on many-core processors. Int. J. High Performance Comput. Appl., 2014, 29(2), 119-134. doi: 10.1177/1094342014528252
  23. McIntosh-Smith, S.; Wilson, T.; Ibarra, A.A.; Crisp, J.; Richard, B. Sessions, benchmarking energy efficiency, power costs and carbon emissions on heterogeneous systems. Comput. J., 55(2), 192-205. doi: 10.1093/comjnl/bxr091
  24. Spezia, L. Bayesian variable selection in non-homogeneous hidden Markov models through an evolutionary Monte Carlo method. Comput. Stat. Data Anal., 2020, 143, 106840. doi: 10.1016/j.csda.2019.106840
  25. Wolfenden, R.; Andersson, L.; Cullis, P.M.; Southgate, C.C.B. Affinities of amino acid side chains for solvent water. Biochemistry, 1981, 20(4), 849-855. doi: 10.1021/bi00507a030 PMID: 7213619
  26. Jarrah, A.; Abedalmuhdi, A.; Alsobeh, A.M.R.; Alqudah, E. High-performance implementation of wideband coherent signal-subspace (CSS)-Based DOA algorithm on FPGA. J. Cir. Syst. Comput., 2021, 30(11), 2150196. doi: 10.1142/S0218126621501966
  27. Almomany, A.; Ayyad, W.R.; Jarrah, A. Optimized implementation of an improved KNN classification algorithm using Intel FPGA platform: COVID-19 case study J. King Saud Univ.-. Comput. Inform. Sci., 2022, 34(6), 3815-3827.
  28. Jarrah, A.; Haymoor, Z.S.; Al-Masri, H.M.K.; Almomany, A. High-performance implementation of power components on FPGA platform. J. Electr. Eng. Technol., 2022, 17(3), 1555-1571. doi: 10.1007/s42835-022-01005-6
  29. Jarrah, A.; Al-Tamimi, A.K.; Albashir, T. Optimized parallel implementation of extended Kalman filter using FPGA. J. Circuits Syst. Comput., 2018, 27(1), 1850009. doi: 10.1142/S0218126618500093
  30. Alqudah, E.; Jarrah, A. Parallel implementation of genetic algorithm on FPGA using Vivado high level synthesis. Int. J. Bio-inspired Comput., 2020, 15(2), 90-99. doi: 10.1504/IJBIC.2020.106439
  31. Al Bataineh, A.; Kaur, D.; Jarrah, A. Enhancing the parallelization of backpropagation neural network algorithm for implementation on fpga platform. 2018. doi: 10.1109/NAECON.2018.8556656
  32. Bataineh, A.A.; Jarrah, A.; Kaur, D. High-speed FPGA-based of the particle swarm optimization using HLS tool. Int. J. Adv. Comput. Sci. Appl., 2019, 10(5) doi: 10.14569/IJACSA.2019.0100502
  33. Zhang, H.; Ma, G.; Zhu, Y.; Zeng, L.; Ahmad, A.; Wang, C.; Pang, B.; Fang, H.; Zhao, L.; Hao, Q. Active-site conformational fluctuations promote the enzymatic activity of NDM-1. Antimicrob. Agents Chemother., 2018, 62(11), e01579-18. doi: 10.1128/AAC.01579-18 PMID: 30150473
  34. Poenaru, A.; Wei-Chen, L.; McIntosh-Smith, S. A performance analysis of modern parallel programming models using a computebound application In. 36th International Conference, ISC High Performance, 2021. miniBUDE: Frankfurt, Germany Available from: https://github.com/UoB-HPC/miniBUDE
  35. Fu, Y.; Wu, X.; Chen, Z.; Sun, J.; Zhao, J.; Wenbo, X. A new approach for flexible molecular docking based on swarm intelligence Math; Prob. Eng., 2015. doi: 10.1155/2015/540186
  36. Das, P.; Majumder, R.; Mandal, M.; Basak, P. In-Silico approach for identification of effective and stable inhibitors for COVID-19 main protease (M pro) from flavonoid based phytochemical constituents of Calendula officinalis. J. Biomol. Struct. Dyn., 2021, 39(16), 6265-6280. doi: 10.1080/07391102.2020.1796799 PMID: 32705952
  37. Vasudevan, A.; Kesavan, D.K.; Wu, L.; Su, Z.; Wang, S.; Ramasamy, M.K.; Hopper, W.; Xu, H. In silico and in vitro Screening of Natural Compounds as Broad-Spectrum β-Lactamase Inhibitors against Acinetobacter baumannii New Delhi Metallo-β-lactamase-1 (NDM-1). Biomed Res. Int., 2022, 2022, 4230788.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers