DFT, Molecular Docking, Bioactivity and ADME Analyses of Vic-dioxim Ligand Containing Hydrazone Group and its Zn(II) Complex


Cite item

Full Text

Abstract

Background:Cancer is one of the diseases affecting a large population worldwide and resulting in death. Finding new anti-cancer drugs that are target-focused and have low toxicity is of great importance.

Objective:This study aimed to investigate the effects of vic-dioxime derivatives carrying hydrazone group and its Zn(II) complex on cancer using molecular docking, bioactivity and quantum chemical calculations.

Methods:Molecular docking studies were performed on epidermal growth factor receptor and vascular endothelial growth factor receptor 2 target proteins. Furthermore, molecular geometry was performed, and the frontier molecular orbitals, Mulliken charges and molecular electron density distribution were evaluated using density functional theory. Also, the bioactivity parameters of the compounds were evaluated, and ADME analysis was performed using web-based tools.

Results:Higher binding affinity was observed for Zn(II) complex with target proteins vascular endothelial growth factor receptor 2 and against epidermal growth factor receptor when compared with LH2. Only the Zn(II) complex against the epidermal growth factor receptor had ligand efficiency and fit quality in the valid range. Furthermore, LH2 has the most potent electrophilic ability (acceptor) among other compounds. Moreover, both LH2 and Zn(II) complexes strongly satisfy Lipinski’s rule of five.

Conclusion:In conclusion, these novel compounds, especially Zn(II) complex, can be new candidates for anticancer drug development studies which are target-focused and have low toxicity.

About the authors

Şerife Gökçe Çalişkan

Department of Physics, Faculty of Sciences,, Adnan Menderes University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Yaseen, Y.; Kubba, A.; Shihab, W.; Tahtamouni, L. Synthesis, docking study, and structure-activity relationship of novel niflumic acid derivatives acting as anticancer agents by inhibiting VEGFR or EGFR tyrosine kinase activities. Pharmacia, 2022, 69(3), 595-614. doi: 10.3897/pharmacia.69.e86504
  2. Haider, K.; Rehman, S.; Pathak, A.; Najmi, A.K.; Yar, M.S. Advances in 2‐substituted benzothiazole scaffold‐based chemotherapeutic agents. Arch. Pharm., 2021, 354(12), 2100246. doi: 10.1002/ardp.202100246 PMID: 34467567
  3. Amadio, M.; Govoni, S.; Pascale, A. Targeting VEGF in eye neovascularization: What’s new? Pharmacol. Res., 2016, 103, 253-269. doi: 10.1016/j.phrs.2015.11.027 PMID: 26678602
  4. Alkahtani, H.M.; Alanazi, M.M.; Aleanizy, F.S.; Alqahtani, F.Y.; Alhoshani, A.; Alanazi, F.E.; Almehizia, A.A.; Abdalla, A.N.; Alanazi, M.G.; El-Azab, A.S.; Abdel-Aziz, A.A.M. Synthesis, anticancer, apoptosis-inducing activities and EGFR and VEGFR2 assay mechanistic studies of 5,5-diphenylimidazolidine-2,4-dione derivatives: Molecular docking studies. Saudi Pharm. J., 2019, 27(5), 682-693. doi: 10.1016/j.jsps.2019.04.003 PMID: 31297023
  5. Altamimi, A.S.; El-Azab, A.S.; Abdelhamid, S.G.; Alamri, M.A.; Bayoumi, A.H.; Alqahtani, S.M.; Alabbas, A.B.; Altharawi, A.I.; Alossaimi, M.A.; Mohamed, M.A. Synthesis, anticancer screening of some novel trimethoxy quinazolines and VEGFR2, EGFR tyrosine kinase inhibitors assay; molecular docking studies. Molecules, 2021, 26(10), 2992. doi: 10.3390/molecules26102992 PMID: 34069962
  6. Shakdofa, M.M.E.; Morsy, N.A.; Rasras, A.J.; Al-Hakimi, A.N.; Shakdofa, A.M.E. Synthesis, characterization, and density functional theory studies of hydrazone–oxime ligand derived from 2,4,6‐trichlorophenyl hydrazine and its metal complexes searching for new antimicrobial drugs. Appl. Organomet. Chem., 2021, 35(2), e6111. doi: 10.1002/aoc.6111
  7. Sarikavakli, N. Morphological and termal studies of synthesized ethanehydroximohydrazide (1Z, 2E)-N′-(1Z)-1-biphenyl-4-yl-2-bromoethylidene-2-(hydroxyimino) and its metal complexes. Dialogo J., 2016, 3, 163-172. doi: 10.18638/dialogo.2016.3.1.15
  8. Jurisson, S.S.; Lydon, J.D. Potential technetium small molecule radiopharmaceuticals. Chem. Rev., 1999, 99(9), 2205-2218. doi: 10.1021/cr980435t PMID: 11749479
  9. Sevagapandian, S.; Rajagopal, G.; Nehru, K.; Athappan, P. Copper(II), nickel(II), cobalt(II) and oxovanadium(IV) complexes of substituted β-hydroxyiminoanilides. Trans. Met. Chem., 2000, 25(4), 388-393. doi: 10.1023/A:1007067326655
  10. Sellmann, D.; Utz, J.; Heinemann, F.W. Transition-metal complexes with sulfur ligands. electron-rich Fe and Ru complexes with MN2S3 cores containing the new pentadentate ligand ‘N2H2S3’2- (= 2,2‘-Bis(2-mercaptophenylamino)diethyl sulfide(2−)). Inorg. Chem., 1999, 38(3), 459-466. doi: 10.1021/ic980383q PMID: 11673949
  11. Laranjeira, M.C.M.; Marusak, R.A.; Lappin, A.G. Driving force effects in proton coupled electron transfer. Inorg. Chim. Acta, 2000, 300-302, 186-190. doi: 10.1016/S0020-1693(99)00558-7
  12. Rakha, T.H. Mononuclear and binuclear chelates of biacetylmonoxime picolinoylhydrazone. Trans. Met. Chem., 1999, 24(6), 659-665. doi: 10.1023/A:1006936101143
  13. Ragavendran, J.V.; Sriram, D.; Patel, S.K.; Reddy, I.V.; Bharathwajan, N.; Stables, J.; Yogeeswari, P. Design and synthesis of anticonvulsants from a combined phthalimide-GABA-anilide and hydrazone pharmacophore. Eur. J. Med. Chem., 2007, 42(2), 146-151. doi: 10.1016/j.ejmech.2006.08.010 PMID: 17011080
  14. Ainscough, E.W.; Brodie, A.M.; Dobbs, A.J.; Ranford, J.D.; Waters, J.M. Antitumour copper(II) salicylaldehyde benzoylhydrazone (H2sb) complexes: physicochemical properties and the single-crystal X-ray structures of Cu(H2sb)(CCl3CO2)22 and Cu(Hsb) (ClO4) (C2H5OH)2 and the related salicylaldehyde acetylhydrazone (H2sa) complex, Cu(Hsa)Cl(H2O)•H2O. Inorg. Chim. Acta, 1998, 267(1), 27-38. doi: 10.1016/S0020-1693(97)05548-5
  15. Abou-Seri, S.M.; Eissa, A.A.M.; Behery, M.G.M.; Omar, F.A. Synthesis, in vitro anticancer activity and in silico studies of certain isoxazole-based carboxamides, ureates, and hydrazones as potential inhibitors of VEGFR2. Bioorg. Chem., 2021, 116, 105334. doi: 10.1016/j.bioorg.2021.105334 PMID: 34534755
  16. Govindaiah, S.; Naha, S.; Madhuchakrapani Rao, T.; Revanasiddappa, B.C.; Srinivasa, S.M.; Parashuram, L.; Velmathi, S.; Sreenivasa, S. Sulfated magnesium zirconate catalyzed synthesis, antimicrobial, antioxidant, anti-inflammatory, and anticancer activity of benzodthiazole-hydrazone analogues and its molecular docking. Results Chem., 2021, 3, 100197. doi: 10.1016/j.rechem.2021.100197
  17. Sarikavakli, N.; İrez, G. Synthesis and complex formation of some novel vicdioxime derivatives of hydrazones. Turk. J. Chem., 2005, 29(1), 107-116.
  18. Sarıkavaklı N.; Çakıcı H.T. Synthesis and characterization of Co(II), Ni(II), Cu(II) and Zn(II) complexes of glyoxime hydrazone. Asian J. Chem., 2011, 23(3), 1321.
  19. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A., Jr; Peralta, J.E. Gaussian 09, Revision B.01; Gaussian Inc.: Wallingford, 2010.
  20. Becke, A.D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-5652. doi: 10.1063/1.464913
  21. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett., 1989, 157(3), 200-206. doi: 10.1016/0009-2614(89)87234-3
  22. Al Zoubi, W.; Ko, Y.G. Enhanced corrosion protection performance by organic-inorganic materials containing thiocarbonyl compounds. Sci. Rep., 2018, 8(1), 10925. doi: 10.1038/s41598-018-29299-5 PMID: 30026470
  23. Koopmans, T. Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines. Atoms. Physica, 1934, 1(1-6), 104-113. doi: 10.1016/S0031-8914(34)90011-2
  24. Allal, H.; Belhocine, Y.; Zouaoui, E. Computational study of some thiophene derivatives as aluminium corrosion inhibitors. J. Mol. Liq., 2018, 265, 668-678. doi: 10.1016/j.molliq.2018.05.099
  25. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), 455-461. doi: 10.1002/jcc.21334 PMID: 19499576
  26. Onawole, A.T.; Kolapo, T.U.; Sulaiman, K.O.; Adegoke, R.O. Structure based virtual screening of the Ebola virus trimeric glycoprotein using consensus scoring. Comput. Biol. Chem., 2018, 72, 170-180. doi: 10.1016/j.compbiolchem.2017.11.006 PMID: 29361403
  27. Hopkins, A.L.; Groom, C.R.; Alex, A. Ligand efficiency: A useful metric for lead selection. Drug Discov. Today, 2004, 9(10), 430-431. doi: 10.1016/S1359-6446(04)03069-7 PMID: 15109945
  28. Reynolds, C.H.; Bembenek, S.D.; Tounge, B.A. The role of molecular size in ligand efficiency. Bioorg. Med. Chem. Lett., 2007, 17(15), 4258-4261. doi: 10.1016/j.bmcl.2007.05.038 PMID: 17532632
  29. Schultes, S.; de Graaf, C.; Haaksma, E.E.J.; de Esch, I.J.P.; Leurs, R.; Krämer, O. Ligand efficiency as a guide in fragment hit selection and optimization. Drug Discov. Today. Technol., 2010, 7(3), e157-e162. doi: 10.1016/j.ddtec.2010.11.003 PMID: 24103767
  30. Available From: www.molinspiration.com
  31. Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789. doi: 10.1103/PhysRevB.37.785 PMID: 9944570
  32. Ferdous, J.M.A.; Kawsar, S. Thermochemical, molecular docking and ADMET studies of some methyl α-D-glucopyranoside derivatives. Chittagong Univ. J. Sci., 2021, 42(1), 58-83. doi: 10.3329/cujs.v42i1.54238
  33. Rupa, S.A.; Moni, M.R.; Patwary, M.A.M.; Mahmud, M.M.; Haque, M.A.; Uddin, J.; Abedin, S.M.T. Synthesis of novel tritopic hydrazine ligands: spectroscopy, biological activity, DFT, and molecular docking studies. Molecules, 2022, 27(5), 1656. doi: 10.3390/molecules27051656 PMID: 35268756
  34. Sulaiman, K.O.; Kolapo, T.U.; Onawole, A.T.; Islam, M.A.; Adegoke, R.O.; Badmus, S.O. Molecular dynamics and combined docking studies for the identification of Zaire ebola virus inhibitors. J. Biomol. Struct. Dyn., 2019, 37(12), 3029-3040. doi: 10.1080/07391102.2018.1506362 PMID: 30058446
  35. Verna, A. Lead finding from phyllanthusdebelis with hepatoprotective potentials. Asi. Pac. J. Trop. Biomed., 2012, 1, 735-737.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers