In silico Analysis of Natural Inhibitors against HPV E6 Protein
- Authors: Vani V.1, Venkateshappa S.2, Nishitha R.3, Shashidhar H.3, Hegde A.3, Alagumuthu M.3
-
Affiliations:
- Department of Microbiology, MS Ramaiah College of Arts, Science and Commerce,
- Department of Microbiology, MS Ramaiah College of Arts, Science and Commerce
- Department of Microbiology,, MS Ramaiah College of Arts Science & Commerce
- Issue: Vol 20, No 3 (2024)
- Pages: 303-311
- Section: Chemistry
- URL: https://ruspoj.com/1573-4099/article/view/644006
- DOI: https://doi.org/10.2174/1573409919666230310144550
- ID: 644006
Cite item
Full Text
Abstract
Background:Drug re-purposing is one of the cost-effective methods to establish novel therapeutics against many diseases. Established natural products are collected from databases and used to potentially screen them against HPV E6 protein, a critical viral protein.
Objective:This study aims to design potential small molecule inhibitors against HPV E6 protein using structure-based approaches. Ten natural anti-cancerous compounds (Apigenin, Baicalein, Baicalin, Ponicidin, Oridonin, Lovastatin, Triterpenoid, Narirutin, Rosmarinic Acid, and Xanthone) were selected by review of the literature.
Methods:These compounds were screened using Lipinski Rule of Five. Out of ten compounds, seven were found to satisfy Rule of five. Docking of these seven compounds was carried out using AutoDock software and corresponding Molecular Dynamics Simulations were performed by GROMACS.
Results:Among the seven compounds docked with the E6 target protein, six compounds showed lesser binding energy than the reference compound, Luteolin. The three-dimensional structures of E6 protein and the corresponding ligand complexes were visualised and analysed using PyMOL whereas the two-dimensional images of protein-ligand interactions were obtained by LigPlot+ software to study the specific interactions. ADME analysis using SwissADME software revealed that all the compounds except Rosmarinic acid have good gastrointestinal absorption and solubility characteristics while Xanthone and Lovastatin showed blood brain barrier penetration properties. Considering the binding energy and ADME analysis, Apigenin and Ponicidin are found to be most suitable for de novo designing of potential inhibitors against the HPV16 E6 protein.
Conclusion:Further, synthesis and characterization of these potential HPV16 E6 inhibitors will be carried out and their functional evaluation using cell culture-based assays will be undertaken.
About the authors
Vemula Vani
Department of Microbiology, MS Ramaiah College of Arts, Science and Commerce,
Email: info@benthamscience.net
Snehalatha Venkateshappa
Department of Microbiology, MS Ramaiah College of Arts, Science and Commerce
Email: info@benthamscience.net
Rachel Nishitha
Department of Microbiology,, MS Ramaiah College of Arts Science & Commerce
Email: info@benthamscience.net
Hima Shashidhar
Department of Microbiology,, MS Ramaiah College of Arts Science & Commerce
Email: info@benthamscience.net
Arpitha Hegde
Department of Microbiology,, MS Ramaiah College of Arts Science & Commerce
Email: info@benthamscience.net
Manikandan Alagumuthu
Department of Microbiology,, MS Ramaiah College of Arts Science & Commerce
Author for correspondence.
Email: info@benthamscience.net
References
- Allison, D.B.; Maleki, Z. HPV-related head and neck squamous cell carcinoma: An update and review. J. Am. Soc. Cytopathol., 2016, 5(4), 203-215. doi: 10.1016/j.jasc.2015.12.001 PMID: 31042510
- Kombe Kombe, A.J.; Li, B.; Zahid, A.; Mengist, H.M.; Bounda, G.A.; Zhou, Y.; Jin, T. Epidemiology and burden of human papillomavirus and related diseases, molecular pathogenesis, and vaccine evaluation. Front. Public Health, 2021, 8, 552028. doi: 10.3389/fpubh.2020.552028 PMID: 33553082
- Cheng, L.; Wang, Y.; Du, J. Human papillomavirus vaccines: An updated review. Vaccines, 2020, 8(3), 391. doi: 10.3390/vaccines8030391 PMID: 32708759
- Akhatova, A.; Azizan, A.; Atageldiyeva, K.; Ashimkhanova, A.; Marat, A.; Iztleuov, Y.; Suleimenova, A.; Shamkeeva, S.; Aimagambetova, G. Prophylactic human papillomavirus vaccination: From the origin to the current state. Vaccines, 2022, 10(11), 1912. doi: 10.3390/vaccines10111912 PMID: 36423008
- Hampson, L.; Martin-Hirsch, P.; Hampson, I.N. An overview of early investigational drugs for the treatment of human papilloma virus infection and associated dysplasia. Expert Opin. Investig. Drugs, 2015, 24(12), 1529-1537. doi: 10.1517/13543784.2015.1099628 PMID: 26457651
- Mittal, S.; Banks, L. Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation. Mutat. Res. Rev. Mutat. Res., 2017, 772, 23-35. doi: 10.1016/j.mrrev.2016.08.001 PMID: 28528687
- Pal, A.; Kundu, R. Human papillomavirus E6 and E7: The cervical cancer hallmarks and targets for therapy. Front. Microbiol., 2020, 10, 3116. doi: 10.3389/fmicb.2019.03116 PMID: 32038557
- Howie, H.L.; Katzenellenbogen, R.A.; Galloway, D.A. Papillomavirus E6 proteins. Virology, 2009, 384(2), 324-334. doi: 10.1016/j.virol.2008.11.017 PMID: 19081593
- Martinez-Zapien, D.; Ruiz, F.X.; Poirson, J.; Mitschler, A.; Ramirez, J.; Forster, A.; Cousido-Siah, A.; Masson, M.; Pol, S.V.; Podjarny, A.; Travé, G.; Zanier, K. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature, 2016, 529(7587), 541-545. doi: 10.1038/nature16481 PMID: 26789255
- Scheffner, M.; Münger, K.; Byrne, J.C.; Howley, P.M. The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc. Natl. Acad. Sci. USA, 1991, 88(13), 5523-5527. doi: 10.1073/pnas.88.13.5523 PMID: 1648218
- Zanier, K.; Charbonnier, S.; Sidi, A.O.M.O.; McEwen, A.G.; Ferrario, M.G.; Poussin-Courmontagne, P.; Cura, V.; Brimer, N.; Babah, K.O.; Ansari, T.; Muller, I.; Stote, R.H.; Cavarelli, J.; Vande Pol, S.; Travé, G. Structural basis for hijacking of cellular LxxLL motifs by papillomavirus E6 oncoproteins. Science, 2013, 339(6120), 694-698. doi: 10.1126/science.1229934 PMID: 23393263
- Malecka, K.A.; Fera, D.; Schultz, D.C.; Hodawadekar, S.; Reichman, M.; Donover, P.S.; Murphy, M.E.; Marmorstein, R. Identification and characterization of small molecule human papillomavirus E6 inhibitors. ACS Chem. Biol., 2014, 9(7), 1603-1612. doi: 10.1021/cb500229d PMID: 24854633
- Zanier, K.; Stutz, C.; Kintscher, S.; Reinz, E.; Sehr, P.; Bulkescher, J.; Hoppe-Seyler, K.; Travé, G.; Hoppe-Seyler, F. The E6AP binding pocket of the HPV16 E6 oncoprotein provides a docking site for a small inhibitory peptide unrelated to E6AP, indicating druggability of E6. PLoS One, 2014, 9(11), e112514. doi: 10.1371/journal.pone.0112514 PMID: 25383876
- Donà, M.G.; Di Bonito, P.; Chiantore, M.V.; Amici, C.; Accardi, L. Targeting human papillomavirus-associated cancer by oncoprotein-specific recombinant antibodies. Int. J. Mol. Sci., 2021, 22(17), 9143. doi: 10.3390/ijms22179143 PMID: 34502053
- Baleja, J.D.; Cherry, J.J.; Liu, Z.; Gao, H.; Nicklaus, M.C.; Voigt, J.H.; Chen, J.J.; Androphy, E.J. Identification of inhibitors to papillomavirus type 16 E6 protein based on three-dimensional structures of interacting proteins. Antiviral Res., 2006, 72(1), 49-59. doi: 10.1016/j.antiviral.2006.03.014 PMID: 16690141
- Cherry, J.J.; Rietz, A.; Malinkevich, A.; Liu, Y.; Xie, M.; Bartolowits, M.; Davisson, V.J.; Baleja, J.D.; Androphy, E.J. Structure based identification and characterization of flavonoids that disrupt human papillomavirus-16 E6 function. PLoS One, 2013, 8(12), e84506. doi: 10.1371/journal.pone.0084506 PMID: 24376816
- DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ., 2016, 47, 20-33. doi: 10.1016/j.jhealeco.2016.01.012 PMID: 26928437
- Murgueitio, M.S.; Bermudez, M.; Mortier, J.; Wolber, G. In silico virtual screening approaches for anti-viral drug discovery. Drug Discov. Today. Technol., 2012, 9(3), e219-e225. doi: 10.1016/j.ddtec.2012.07.009 PMID: 24990575
- Wang, H.; Oo Khor, T.; Shu, L.; Su, Z.Y.; Fuentes, F.; Lee, J.H.; Tony Kong, A-N. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer. Agents Med. Chem., 2012, 12(10), 1281-1305. doi: 10.2174/187152012803833026 PMID: 22583408
- Sagar, S.M. Natural health products that inhibit angiogenesis: A potential source for investigational new agents to treat cancer-Part 1. Current oncology, 2006, 13(1), 14-26.
- Lin, C.K.; Liu, S.T.; Chang, C.C.; Huang, S.M. Regulatory mechanisms of fluvastatin and lovastatin for the p21 induction in human cervical cancer HeLa cells. PLoS One, 2019, 14(4), e0214408. doi: 10.1371/journal.pone.0214408 PMID: 30939155
- Rawson, N.E.; Ho, C-T.; Li, S. Efficacious anti-cancer property of flavonoids from citrus peels. Food Sci. Hum. Wellness, 2014, 3(3-4), 104-109. doi: 10.1016/j.fshw.2014.11.001
- Vieira, L.M.M.; Kijjoa, A. Naturally-occurring xanthones: Recent developments. Curr. Med. Chem., 2005, 12(21), 2413-2446. doi: 10.2174/092986705774370682 PMID: 16250871
- Beutner, K.R.; Ferenczy, A. Therapeutic approaches to genital warts. Am. J. Med., 1997, 102(5A), 28-37. doi: 10.1016/S0002-9343(97)00181-2 PMID: 9217660
- Alagumuthu, M.; Muralidharan, V.P.; Andrew, M.; Ahmed, M.H.; Iyer, S.K.; Arumugam, S. Computational approaches to develop isoquinoline based antibiotics through DNA gyrase inhibition mechanisms unveiled through antibacterial evaluation and molecular docking. Mol. Inform., 2018, 37(12), 1800048. doi: 10.1002/minf.201800048 PMID: 30051592
- Alagumuthu, M.; Arumugam, S. Molecular docking, discovery, synthesis, and pharmacological properties of new 6-substituted-2-(3-phenoxyphenyl)-4-phenyl quinoline derivatives; an approach to developing potent DNA gyrase inhibitors/antibacterial agents. Bioorg. Med. Chem., 2017, 25(4), 1448-1455. doi: 10.1016/j.bmc.2017.01.007 PMID: 28094220
- Sanner, Michel F. A programming language for software integration and development. J. Mol. Graphics Mod., 1999, 57-61.
- Lilkova, E. The PyMOL Molecular Graphics System, Version 2.0 Schrodinger, LLC. 2015.
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel., 1995, 8(2), 127-134. doi: 10.1093/protein/8.2.127 PMID: 7630882
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 235-242.
- Jayaram, B.; Singh, T.; Mukherjee, G.; Mathur, A.; Shekhar, S.; Shekhar, V. Sanjeevini: A freely accessible web-server for target directed lead molecule discovery. BMC Bioinformatics, 2012, 13(Suppl. 17), S7. doi: 10.1186/1471-2105-13-S17-S7 PMID: 23282245
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341. doi: 10.1016/j.ddtec.2004.11.007 PMID: 24981612
- OBoyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33. doi: 10.1186/1758-2946-3-33 PMID: 21982300
- Alagumuthu, M.; Rajpoot, S.; Baig, M.S. Structure-based design of novel peptidomimetics targeting the SARS-CoV-2 spike protein. Cell. Mol. Bioeng., 2021, 14(2), 177-185. doi: 10.1007/s12195-020-00658-5 PMID: 33072222
- Oostenbrink, C.; Villa, A.; Mark, A.E.; Van Gunsteren, W.F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem., 2004, 25(13), 1656-1676. doi: 10.1002/jcc.20090 PMID: 15264259
- Stefl, P. What is log Pow? The O/W partition coefficient in SDSs. , 2017. Available From: https://www.gesi.de/en/blog/2017/02/06/what-is-log-pow-the-o-w-partition-coefficient-in-sdss/
- Fagerholm, U.; Hellberg, S.; Spjuth, O. Advances in predictions of oral bioavailability of candidate drugs in man with new machine learning methodology. Molecules, 2021, 26(9), 2572. doi: 10.3390/molecules26092572 PMID: 33925103
- Middha, S.K.; Goyal, A.K.; Faizan, S.A.; Sanghamitra, N.; Basistha, B.C.; Usha, T. In silico based combinatorial pharmacophore modelling and docking studies of GSK-3β and GK inhibitors of Hippophae. J. Biosci., 2013, 38(4), 805-814. doi: 10.1007/s12038-013-9367-y PMID: 24287660
- Negi, J.S.; Bisht, V.K.; Singh, P.; Rawat, M.S.M.; Joshi, G.P. Naturally occurring xanthones: chemistry and biology. J. Appl. Chem., 2013, 621459, 2013. doi: 10.1155/2013/621459
Supplementary files
