Network Pharmacology Combined with GEO Analysis of the Mechanism of Qing-Jin-Hua-Tan Decoction in the Treatment of Non-small Cell Lung Cancer
- Authors: Wei Y.1, Liu C.2
-
Affiliations:
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine
- Department of Medical Image, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital)
- Issue: Vol 20, No 4 (2024)
- Pages: 396-404
- Section: Chemistry
- URL: https://ruspoj.com/1573-4099/article/view/644057
- DOI: https://doi.org/10.2174/1573409919666230523155830
- ID: 644057
Cite item
Full Text
Abstract
Background:Non-small-cell lung cancer (NSCLC) is one of the most prevalent malignancies and poses a significant threat to human health. Qing-Jin-Hua-Tan (QJHT) decoction is a classical herbal remedy that has demonstrated therapeutic effects in various diseases, including NSCLC, and can improve the quality of life of patients with respiratory conditions. However, the mechanism underlying the effect of the QJHT decoction on NSCLC remains unclear and requires further investigation.
Methods:We collected NSCLC-related gene datasets from the GEO database and performed differential gene analysis, followed by using WGCNA to identify the core set of genes associated with NSCLC development. The TCMSP and HERB databases were searched to identify the active ingredients and drug targets, and the core gene target datasets related to NSCLC were merged to identify the intersecting targets of drugs and diseases for GO and KEGG pathway enrichment analysis. We then constructed a protein-protein interaction (PPI) network map of drug diseases using the MCODE algorithm and identified key genes using topology analysis. The disease-gene matrix underwent immunoinfiltration analysis, and we analyzed the association between intersecting targets and immunoinfiltration.
Results:We obtained the GSE33532 dataset that met the screening criteria, and a total of 2211 differential genes were identified using differential gene analysis. We performed GSEA analysis and WGCNA analysis for a crossover with differential genes, resulting in 891 key targets for NSCLC. The drug database was screened to obtain 217 active ingredients and 339 drug targets of QJHT. By constructing a PPI network, the active ingredients of QJHT decoction were intersected with the targets of NSCLC, resulting in 31 intersected genes. Enrichment analysis of the intersection targets showed that 1112 biological processes, 18 molecular functions, and 77 cellular compositions were enriched in GO functions, and 36 signaling pathways were enriched in KEGG pathways. Based on immune-infiltrating cell analysis, we found that the intersection targets were significantly associated with multiple infiltrating immune cells.
Conclusion:Our analysis using network pharmacology and mining of the GEO database revealed that QJHT decoction can potentially treat NSCLC through multi-target and multi-signaling pathways, while also regulating multiple immune cells.
About the authors
Yi Wei
Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine
Email: info@benthamscience.net
Chao Liu
Department of Medical Image, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital)
Author for correspondence.
Email: info@benthamscience.net
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48. doi: 10.3322/caac.21763 PMID: 36633525
- Nasim, F.; Sabath, B.F.; Eapen, G.A. Lung Cancer. Med. Clin. North Am., 2019, 103(3), 463-473. doi: 10.1016/j.mcna.2018.12.006 PMID: 30955514
- Duma, N.; Santana-Davila, R.; Molina, J.R. NonSmall Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clin. Proc., 2019, 94(8), 1623-1640. doi: 10.1016/j.mayocp.2019.01.013 PMID: 31378236
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The Biology and Management of Non-small Cell Lung Cancer. Nature, 2018, 553(7689), 446-454. doi: 10.1038/nature25183 PMID: 29364287
- VanderLaan, P.A.; Roy-Chowdhuri, S. Current and Future Trends in Non-small Cell Lung Cancer Biomarker Testing: The American Experience. Cancer Cytopathol., 2020, 128(9), 629-636. doi: 10.1002/cncy.22313 PMID: 32885913
- Wu, F.; Wang, L.; Zhou, C. Lung Cancer in China: Current and Prospect. Curr. Opin. Oncol., 2021, 33(1), 40-46. doi: 10.1097/CCO.0000000000000703 PMID: 33165004
- Luo, T.; Lu, Y.; Yan, S.; Xiao, X.; Rong, X.; Guo, J. Network Pharmacology in Research of Chinese Medicine Formula: Methodology, Application and Prospective. Chin. J. Integr. Med., 2020, 26(1), 72-80. doi: 10.1007/s11655-019-3064-0 PMID: 30941682
- Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network Pharmacology: Curing Causal Mechanisms Instead of Treating Symptoms. Trends Pharmacol. Sci., 2022, 43(2), 136-150. doi: 10.1016/j.tips.2021.11.004 PMID: 34895945
- Zhang, R.; Zhu, X.; Bai, H.; Ning, K. Network Pharmacology Databases for Traditional Chinese Medicine: Review and Assessment. Front. Pharmacol., 2019, 10, 123. doi: 10.3389/fphar.2019.00123 PMID: 30846939
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: Archive for Functional Genomics Data Sets-Update. Nucleic Acids Res., 2013, 41(Database issue), D991-D995. PMID: 23193258
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma Powers Differential Expression Analyses for RNA-sequencing and Microarray Studies. Nucleic Acids Res., 2015, 43(7), e47. doi: 10.1093/nar/gkv007 PMID: 25605792
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A Database of Systems Pharmacology for Drug Discovery from Herbal Medicines. J. Cheminform., 2014, 6(1), 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
- Fang, S.; Dong, L.; Liu, L.; Guo, J.; Zhao, L.; Zhang, J.; Bu, D.; Liu, X.; Huo, P.; Cao, W.; Dong, Q.; Wu, J.; Zeng, X.; Wu, Y.; Zhao, Y. HERB: A High-throughput Experiment and Reference-Guided Database of Traditional Chinese Medicine. Nucleic Acids Res., 2021, 49(D1), D1197-D1206. doi: 10.1093/nar/gkaa1063 PMID: 33264402
- Langfelder, P.; Horvath, S. WGCNA: An R Package for Weighted Correlation Network Analysis. BMC Bioinformatics, 2008, 9(1), 559. doi: 10.1186/1471-2105-9-559 PMID: 19114008
- Bateman, A.; Martin, M-J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bursteinas, B.; Bye-A-Jee, H.; Coetzee, R.; Cukura, A.; Da Silva, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Castro, L.G.; Garmiri, P.; Georghiou, G.; Gonzales, L.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Jokinen, P.; Joshi, V.; Jyothi, D.; Lock, A.; Lopez, R.; Luciani, A.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Menchi, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Oliveira, C.S.; Pundir, S.; Qi, G.; Raj, S.; Rice, D.; Lopez, M.R.; Saidi, R.; Sampson, J.; Sawford, T.; Speretta, E.; Turner, E.; Tyagi, N.; Vasudev, P.; Volynkin, V.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Bridge, A.; Poux, S.; Redaschi, N.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.; Axelsen, K.; Bansal, P.; Baratin, D.; Blatter, M-C.; Bolleman, J.; Boutet, E.; Breuza, L.; Casals-Casas, C.; de Castro, E.; Echioukh, K.C.; Coudert, E.; Cuche, B.; Doche, M.; Dornevil, D.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz-Gumowski, N.; Hinz, U.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Keller, G.; Kerhornou, A.; Lara, V.; Le Mercier, P.; Lieberherr, D.; Lombardot, T.; Martin, X.; Masson, P.; Morgat, A.; Neto, T.B.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pourcel, L.; Pozzato, M.; Pruess, M.; Rivoire, C.; Sigrist, C.; Sonesson, K.; Stutz, A.; Sundaram, S.; Tognolli, M.; Verbregue, L.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Garavelli, J.S.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y.; Yeh, L-S.; Zhang, J.; Ruch, P.; Teodoro, D. UniProt: The Universal Protein Knowledgebase in 2021. Nucleic Acids Res., 2021, 49(D1), D480-D489. doi: 10.1093/nar/gkaa1100 PMID: 33237286
- Ke, W.; Zhang, L.; Dai, Y. The Role of IL‐6 in Immunotherapy of Non‐small Cell Lung Cancer (NSCLC) with Immune‐related Adverse Events (irAEs). Thorac. Cancer, 2020, 11(4), 835-839. doi: 10.1111/1759-7714.13341 PMID: 32043828
- Scott, L.J. Tocilizumab: A Review in Rheumatoid Arthritis. Drugs, 2017, 77(17), 1865-1879. doi: 10.1007/s40265-017-0829-7 PMID: 29094311
- Li, Q.; Han, Y.; Fei, G.; Guo, Z.; Ren, T.; Liu, Z. IL-17 Promoted Metastasis of Non-small-cell Lung Cancer Cells. Immunol. Lett., 2012, 148(2), 144-150. doi: 10.1016/j.imlet.2012.10.011 PMID: 23089548
- Wagner, N.; Wagner, K.D. PPAR Beta/Delta and the Hallmarks of Cancer. Cells, 2020, 9(5), 1133. doi: 10.3390/cells9051133 PMID: 32375405
- Yang, J. PPAR-γ Silencing Inhibits the Apoptosis of A549 Cells by Upregulating Bcl-2 Zhongguo Fei Ai Za Zhi, 2013, 16(3), 125-130. PMID: 23514940
- Chuang, C.H.; Yeh, C.L.; Yeh, S.L.; Lin, E.S.; Wang, L.Y.; Wang, Y.H. Quercetin Metabolites Inhibit MMP-2 Expression in A549 Lung Cancer Cells by PPAR-γ Associated Mechanisms. J. Nutr. Biochem., 2016, 33, 45-53. doi: 10.1016/j.jnutbio.2016.03.011 PMID: 27260467
- Lim, K.H.; Staudt, L.M. Toll-like Receptor Signaling. Cold Spring Harb. Perspect. Biol., 2013, 5(1), a011247. doi: 10.1101/cshperspect.a011247 PMID: 23284045
- Pahlavanneshan, S.; Sayadmanesh, A.; Ebrahimiyan, H.; Basiri, M. Toll-Like Receptor-Based Strategies for Cancer Immunotherapy. J. Immunol. Res., 2021, 2021, 1-14. doi: 10.1155/2021/9912188 PMID: 34124272
- Tran, T.H.; Tran, T.T.P.; Truong, D.H.; Nguyen, H.T.; Pham, T.T.; Yong, C.S.; Kim, J.O. Toll-like Receptor-targeted Particles: A Paradigm to Manipulate the Tumor Microenvironment for Cancer Immunotherapy. Acta Biomater., 2019, 94, 82-96. doi: 10.1016/j.actbio.2019.05.043 PMID: 31129358
- Wang, K.; Wang, J.; Wei, F.; Zhao, N.; Yang, F.; Ren, X. Expression of TLR4 in Non-Small Cell Lung Cancer Is Associated with PD-L1 and Poor Prognosis in Patients Receiving Pulmonectomy. Front. Immunol., 2017, 8, 456. doi: 10.3389/fimmu.2017.00456 PMID: 28484456
- Tavora, B.; Mederer, T.; Wessel, K.J.; Ruffing, S.; Sadjadi, M.; Missmahl, M.; Ostendorf, B.N.; Liu, X.; Kim, J.Y.; Olsen, O.; Welm, A.L.; Goodarzi, H.; Tavazoie, S.F. Tumoural Activation of TLR3SLIT2 Axis in Endothelium Drives Metastasis. Nature, 2020, 586(7828), 299-304. doi: 10.1038/s41586-020-2774-y PMID: 32999457
Supplementary files
