Assessment of Anticholinergic and Antidiabetic Properties of Some Natural and Synthetic Molecules: An In vitro and In silico Approach
- Authors: Çomaklı V.1, Aygül İ.2, Sağlamtaş R.3, Kuzu M.4, Demirdağ R.1, Akincioğlu H.5, Adem Ş.6, Gülçin İ.7
-
Affiliations:
- Department of Nutrition and Dietetics, İbrahim Çeçen University of Ağrı
- Department of Nutrition and Dietetics,, Gümüşhane University
- Department of Medical Services and Techniques,, İbrahim Çeçen University of Ağrı,
- Department of NutritioDepartment of Nutrition and Dieteticsn and Dietetics, Karabük University
- Department of Chemistry, İbrahim Çeçen University of Ağrı
- Department of Chemistry, Çankırı Karatekin University
- Department of Chemistry, Atatürk University
- Issue: Vol 20, No 5 (2024)
- Pages: 441-451
- Section: Chemistry
- URL: https://ruspoj.com/1573-4099/article/view/644089
- DOI: https://doi.org/10.2174/1573409919666230518151414
- ID: 644089
Cite item
Full Text
Abstract
Introduction:This study aimed to determine the in vitro and in silico effects of some natural and synthetic molecules on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glucosidase enzymes.
Background:Alzheimer's disease (AD) and Type II diabetes mellitus (T2DM) are considered the most important diseases of todays world. However, the side effects of therapeutic agents used in both diseases limit their use. Therefore, developing drugs with high therapeutic efficacy and better pharmacological profile is important.
Objective:This study sets out to determine the related enzyme inhibitors used in treating AD and T2DM, considered amongst the most important diseases of todays world.
Methods:In the current study, the in vitro and in silico effects of dienestrol, hesperetin, Lthyroxine, 3,3',5-Triiodo-L-thyronine (T3) and dobutamine molecules on AChE, BChE and α- glycosidase enzyme activities were investigated.
Results:All the molecules showed an inhibitory effect on the enzymes. The IC50 and Ki values of the L-Thyroxine molecule, which showed the strongest inhibition effect for the AChE enzyme, were determined as 1.71 µM and 0.83 ± 0.195 µM, respectively. In addition, dienestrol, T3, and dobutamine molecules showed a more substantial inhibition effect than tacrine. The dobutamine molecule showed the most substantial inhibition effect for the BChE enzyme, and IC50 and Ki values were determined as 1.83 µM and 0.845 ± 0.143 µM, respectively. The IC50 and Ki values for the hesperetin molecule, which showed the strongest inhibition for the α-glycosidase enzyme, were determined as 13.57 µM and 12.33 ± 2.57 µM, respectively.
Conclusion:According to the results obtained, the molecules used in the study may be considered potential inhibitor candidates for AChE, BChE and α-glycosidase.
About the authors
Veysel Çomaklı
Department of Nutrition and Dietetics, İbrahim Çeçen University of Ağrı
Author for correspondence.
Email: info@benthamscience.net
İmdat Aygül
Department of Nutrition and Dietetics,, Gümüşhane University
Email: info@benthamscience.net
Rüya Sağlamtaş
Department of Medical Services and Techniques,, İbrahim Çeçen University of Ağrı,
Email: info@benthamscience.net
Müslüm Kuzu
Department of NutritioDepartment of Nutrition and Dieteticsn and Dietetics, Karabük University
Email: info@benthamscience.net
Ramazan Demirdağ
Department of Nutrition and Dietetics, İbrahim Çeçen University of Ağrı
Email: info@benthamscience.net
Hülya Akincioğlu
Department of Chemistry, İbrahim Çeçen University of Ağrı
Email: info@benthamscience.net
Şevki Adem
Department of Chemistry, Çankırı Karatekin University
Email: info@benthamscience.net
İlhami Gülçin
Department of Chemistry, Atatürk University
Email: info@benthamscience.net
References
- Friedli, M.J.; Inestrosa, N.C. Huperzine A and its neuroprotective molecular signaling in alzheimers disease. Molecules, 2021, 26(21), 6531. doi: 10.3390/molecules26216531 PMID: 34770940
- Chiang, T.I.; Yu, Y.H.; Lin, C.H.; Lane, H.Y. Novel biomarkers of alzheimers disease: Based upon N-methyl-D-aspartate receptor hypoactivation and oxidative stress. Clin. Psychopharmacol. Neurosci., 2021, 19(3), 423-433. doi: 10.9758/cpn.2021.19.3.423 PMID: 34294612
- Aras, A.; Türkan, F.; Yildiko, U.; Atalar, M.N.; Kılıç, Ö.; Alma, M.H.; Bursal, E. Biochemical constituent, enzyme inhibitory activity, and molecular docking analysis of an endemic plant species, Thymus migricus. Chem. Pap., 2021, 75(3), 1133-1146. doi: 10.1007/s11696-020-01375-z
- Bartolini, M.; Bertucci, C.; Cavrini, V.; Andrisano, V. β-Amyloid aggregation induced by human acetylcholinesterase: Inhibition studies. Biochem. Pharmacol., 2003, 65(3), 407-416. doi: 10.1016/S0006-2952(02)01514-9 PMID: 12527333
- Lolak, N.; Akocak, S.; Türkeş, C.; Taslimi, P.; Işık, M.; Beydemir, Ş.; Gülçin, İ.; Durgun, M. Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorg. Chem., 2020, 100, 103897. doi: 10.1016/j.bioorg.2020.103897 PMID: 32413628
- Türkan, F.; Huyut, Z.; Taslimi, P.; Gülçin, İ. The effects of some antibiotics from cephalosporin groups on the acetylcholinesterase and butyrylcholinesterase enzymes activities in different tissues of rats. Arch. Physiol. Biochem., 2019, 125(1), 12-18. doi: 10.1080/13813455.2018.1427766 PMID: 29364753
- Benazzouz-Touami, A.; Chouh, A.; Halit, S.; Terrachet-Bouaziz, S.; Makhloufi-Chebli, M.; Ighil-Ahriz, K.; Silva, A.M.S. New Coumarin-Pyrazole hybrids: Synthesis, Docking studies and Biological evaluation as potential cholinesterase inhibitors. J. Mol. Struct., 2022, 1249, 131591. doi: 10.1016/j.molstruc.2021.131591
- Domínguez, R.O.; Pagano, M.A.; Marschoff, E.R.; González, S.E.; Repetto, M.G.; Serra, J.A. Alzheimer disease and cognitive impairment associated with diabetes mellitus type 2: Associations and a hypothesis. Neurología, 2014, 29(9), 567-572. doi: 10.1016/j.nrleng.2014.10.001 PMID: 24140159
- Günsel, A.; Taslimi, P.; Atmaca, G.Y.; Bilgiçli, A.T.; Pişkin, H.; Ceylan, Y.; Erdoğmuş, A.; Yarasir, M.N.; Gülçin, İ. Novel potential metabolic enzymes inhibitor, photosensitizer and antibacterial agents based on water-soluble phthalocyanine bearing imidazole derivative. J. Mol. Struct., 2021, 1237, 130402. doi: 10.1016/j.molstruc.2021.130402
- Deswal, L.; Verma, V.; Devinder, K.; Deswal, Y.; Kumar, A.; Rajnish, K.; Parshad, M.; Bhatia, M. Synthesis, antimicrobial and α-Glucosidase inhibition of new benzimidazole-1,2,3-Triazole-Indoline derivatives: A combined experimental and computational venture. Chem. Pap., 2022, 1, 1-16.
- Gülçin, İ.; Trofimov, B.; Kaya, R.; Taslimi, P.; Sobenina, L.; Schmidt, E.; Petrova, O.; Malysheva, S.; Gusarova, N.; Farzaliyev, V.; Sujayev, A.; Alwasel, S.; Supuran, C.T. Synthesis of nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds Determination of their carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibition properties. Bioorg. Chem., 2020, 103, 104171. doi: 10.1016/j.bioorg.2020.104171 PMID: 32891857
- Gülçin, İ.; Gören, A.C.; Taslimi, P.; Alwasel, S.H.; Kılıc, O.; Bursal, E. Anticholinergic, antidiabetic and antioxidant activities of Anatolian pennyroyal (Mentha pulegium)-analysis of its polyphenol contents by LC-MS/MS. Biocatal. Agric. Biotechnol., 2020, 23, 101441. doi: 10.1016/j.bcab.2019.101441
- Tam, K.Y.; Ju, Y. Pathological mechanisms and therapeutic strategies for Alzheimers disease. Neural Regen. Res., 2022, 17(3), 543-549. doi: 10.4103/1673-5374.320970 PMID: 34380884
- Akocak, S.; Taslimi, P.; Lolak, N.; Işık, M.; Durgun, M.; Budak, Y.; Türkeş, C.; Gülçin, İ.; Beydemir, Ş. Synthesis, characterization, and inhibition study of novel substituted phenylureido sulfaguanidine derivatives as α‐Glycosidase and cholinesterase inhibitors. Chem. Biodivers., 2021, 18(4), e2000958. doi: 10.1002/cbdv.202000958 PMID: 33620128
- Wierzbicka, A.; Mańkowska‐wierzbicka, D.; Cieślewicz, S.; Stelmach‐mardas, M.; Mardas, M. Interventions preventing vaginitis, vaginal atrophy after brachytherapy or radiotherapy due to malignant tumors of the female reproductive organs-a systematic review. Int J Environ Res Public Health., 2021, 18(8), 3932.
- Carraher, C.E., Jr; Roner, M.R.; Shahi, K.; Barot, G. Structural Consideration in designing organotin polyethers to arrest the growth of breast cancer cells In vitro. Materials, 2011, 4(4), 801-815. doi: 10.3390/ma4040801 PMID: 28879951
- Hong, X.; Luo, X.; Wang, L.; Gong, D.; Zhang, G. New insights into the inhibition of hesperetin on polyphenol oxidase: Inhibitory kinetics, binding characteristics, conformational change and computational simulation. Foods, 2023, 12(4), 905. doi: 10.3390/foods12040905 PMID: 36832979
- Finan, B.; Parlee, S.D.; Yang, B. Nuclear hormone and peptide hormone therapeutics for NAFLD and NASH. Mol. Metab., 2021, 46, 101153. doi: 10.1016/j.molmet.2020.101153 PMID: 33359400
- Mullur, R.; Liu, Y.Y.; Brent, G.A. Thyroid hormone regulation of metabolism. Physiol. Rev., 2014, 94(2), 355-382. doi: 10.1152/physrev.00030.2013 PMID: 24692351
- Ruffolo, R.R., Jr. The pharmacology of dobutamine. Am. J. Med. Sci., 1987, 294(4), 244-248. doi: 10.1097/00000441-198710000-00005 PMID: 3310640
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95. doi: 10.1016/0006-2952(61)90145-9 PMID: 13726518
- Yiğit, M.; Celepci, D.B.; Taslimi, P.; Yiğit, B.; Çetinkaya, E.; Özdemir, İ.; Aygün, M.; Gülçin, İ. Selenourea and thiourea derivatives of chiral and achiral enetetramines: Synthesis, characterization and enzyme inhibitory properties. Bioorg. Chem., 2022, 120, 105566. doi: 10.1016/j.bioorg.2021.105566 PMID: 34974209
- Sujayev, A.; Taslimi, P.; Kaya, R.; Safarov, B.; Aliyeva, L.; Farzaliyev, V.; Gulçin, İ. Synthesis, characterization and biological evaluation of N ‐substituted triazinane‐2‐thiones and theoreticalexperimental mechanism of condensation reaction. Appl. Organomet. Chem., 2020, 34(2), e5329. doi: 10.1002/aoc.5329
- Zengin, M.; Genc, H.; Taslimi, P.; Kestane, A.; Guclu, E.; Ogutlu, A.; Karabay, O.; Gulçin, İ. Novel thymol bearing oxypropanolamine derivatives as potent some metabolic enzyme inhibitors Their antidiabetic, anticholinergic and antibacterial potentials. Bioorg. Chem., 2018, 81, 119-126. doi: 10.1016/j.bioorg.2018.08.003 PMID: 30118983
- Yılmaz, M.A.; Taslimi, P.; Kılıç, Ö.; Gülçin, İ.; Dey, A.; Bursal, E. Unravelling the phenolic compound reserves, antioxidant and enzyme inhibitory activities of an endemic plant species, Achillea pseudoaleppica. J. Biomol. Struct. Dyn., 2023, 41(2), 445-456. doi: 10.1080/07391102.2021.2007792 PMID: 34822320
- Akıncıoğlu, A.; Göksu, S.; Naderi, A.; Akıncıoğlu, H.; Kılınç, N.; Gülçin, İ. Cholinesterases, carbonic anhydrase inhibitory properties and in silico studies of novel substituted benzylamines derived from dihydrochalcones. Comput. Biol. Chem., 2021, 94, 107565. doi: 10.1016/j.compbiolchem.2021.107565 PMID: 34474201
- Tao, Y.; Zhang, Y.; Cheng, Y.; Wang, Y. Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed. Chromatogr., 2013, 27(2), 148-155. doi: 10.1002/bmc.2761 PMID: 22674728
- Burmaoglu, S.; Yilmaz, A.O.; Taslimi, P.; Algul, O.; Kilic, D.; Gulcin, I. Synthesis and biological evaluation of phloroglucinol derivatives possessing α-glycosidase, acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase inhibitory activity. Arch. Pharm., 2018, 351(2), 1700314. doi: 10.1002/ardp.201700314 PMID: 29323749
- Taslimi, P.; Kandemir, F.M.; Demir, Y.; İleritürk, M.; Temel, Y.; Caglayan, C.; Gulçin, İ. The antidiabetic and anticholinergic effects of chrysin on cyclophosphamide‐induced multiple organ toxicity in rats: Pharmacological evaluation of some metabolic enzyme activities. J. Biochem. Mol. Toxicol., 2019, 33(6), e22313. doi: 10.1002/jbt.22313 PMID: 30801880
- Kuzu, M.; Aslan, A.; Ahmed, I.; Comakli, V.; Demirdag, R.; Uzun, N. Purification of glucose-6-phosphate dehydrogenase and glutathione reductase enzymes from the gill tissue of Lake Van fish and analyzing the effects of some chalcone derivatives on enzyme activities. Fish Physiol. Biochem., 2016, 42(2), 483-491. doi: 10.1007/s10695-015-0153-7 PMID: 26676512
- Türkoğlu, E.A.; Kuzu, M.; Ayasan, T.; Inci, H.; Eratak, S.V. Inhibitory effects of some flavonoids on thioredoxin reductase purified from chicken liver. Braz. J. Poult. Sci., 2019, 21(2), eRBCA-2019-0982. doi: 10.1590/1806-9061-2018-0982
- Temel, Y.; Koçyigit, U.M.; Taysı, M.Ş.; Gökalp, F.; Gürdere, M.B.; Budak, Y.; Ceylan, M.; Gülçin, İ.; Çiftci, M. Purification of glutathione S-transferase enzyme from quail liver tissue and inhibition effects of (3a R, 4 S, 7 R, 7a S)-2-(4-((E)-3-(aryl)acryloyl)phenyl)-3a,4,7,7a-tetrahydro-1 H -4,7-methanoisoindole-1,3(2 H)-dione derivatives on the enzyme activity. J. Biochem. Mol. Toxicol., 2018, 32(3), e22034. doi: 10.1002/jbt.22034 PMID: 29350485
- Metzler, M.; Fischer, L.J. The metabolism of diethylstilbestro. Crit. Rev. Biochem., 1981, 10(3), 171-212. doi: 10.3109/10409238109113599
- Elhennawy, M.G.; Abdelaleem, E.A.; Zaki, A.A.; Mohamed, W.R. Cinnamaldehyde and hesperetin attenuate TNBS‐induced ulcerative colitis in rats through modulation of the JAk2/STAT3/SOCS3 pathway. J. Biochem. Mol. Toxicol., 2021, 35(5), e22730. doi: 10.1002/jbt.22730 PMID: 33522063
- Ren, H.; Hao, J.; Liu, T.; Zhang, D.; Lv, H.; Song, E.; Zhu, C. Hesperetin suppresses inflammatory responses in lipopolysaccharide-induced RAW 264.7 Cells via the Inhibition of NF-κB and activation of Nrf2/HO-1 pathways. Inflammation, 2016, 39(3), 964-973. doi: 10.1007/s10753-016-0311-9 PMID: 26994999
- Cho, J. Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin. Arch. Pharm. Res., 2006, 29(8), 699-706. doi: 10.1007/BF02968255 PMID: 16964766
- Svanfelt, J.; Eriksson, J.; Kronberg, L. Analysis of thyroid hormones in raw and treated waste water. J. Chromatogr. A, 2010, 1217(42), 6469-6474. doi: 10.1016/j.chroma.2010.08.032 PMID: 20850122
- Noda, M. Thyroid hormone in the CNS: Contribution of neuronglia interaction. Vitam. Horm., 2018, 106, 313-331. doi: 10.1016/bs.vh.2017.05.005 PMID: 29407440
- Mielgo, V.; Valls i Soler, A.; Rey-Santano, C. Dobutamine in paediatric population: A systematic review in juvenile animal models. PLoS One, 2014, 9(4), e95644. doi: 10.1371/journal.pone.0095644 PMID: 24755688
- Hu, Q.; Guan, X.Q.; Song, L.L.; Wang, H.N.; Xiong, Y.; Liu, J.L.; Yin, H.; Cao, Y.F.; Hou, J.; Yang, L.; Ge, G.B. Inhibition of pancreatic lipase by environmental xenoestrogens. Ecotoxicol. Environ. Saf., 2020, 192, 110305. doi: 10.1016/j.ecoenv.2020.110305 PMID: 32070782
- Maitreesophone, P.; Khine, H.E.E.; Nealiga, J.Q.L.; Kongkatitham, V.; Panuthai, P.; Chaotham, C.; Likhitwitayawuid, K.; Sritularak, B. α-Glucosidase and pancreatic lipase inhibitory effects and anti-adipogenic activity of dendrofalconerol B, a bisbibenzyl from Dendrobium harveyanum. S. Afr. J. Bot., 2022, 146, 187-195. doi: 10.1016/j.sajb.2021.10.025
- Türk, E.; Ozan Tekeli, I.; Özkan, H.; Uyar, A.; Cellat, M.; Kuzu, M.; Yavas, I.; Alizadeh Yegani, A.; Yaman, T.; Güvenç, M. The protective effect of esculetin against aluminium chloride-induced reproductive toxicity in rats. Andrologia, 2021, 53(2), e13930. doi: 10.1111/and.13930 PMID: 33368464
- Taskin, T.; Kahvecioglu, D.; Turkoglu, A.; Dogan, A.; Kuzu, M.; Turkoğlu, A. In vitro biological activities of different extracts from alcea dissecta. Clin. Exp. Heal. Sci., 2022, 12(1), 53-60.
- Gishen, N.Z.; Taddese, S.; Zenebe, T.; Dires, K.; Tedla, A.; Mengiste, B.; Shenkute, D.; Tesema, A.; Shiferaw, Y.; Lulekal, E. In vitro antimicrobial activity of six Ethiopian medicinal plants against Staphylococcus aureus, Escherichia coli and Candida albicans. Eur. J. Integr. Med., 2020, 36, 101121. doi: 10.1016/j.eujim.2020.101121
- Amin Huseen, N.H. Docking Study of naringin binding with COVID-19 main protease enzyme. Iraqi J. Pharm Sci., 2020, 29(2), 231-238. doi: 10.31351/vol29iss2pp231-238
- Rasouli, H.; Hosseini-Ghazvini, S.M.B.; Adibi, H.; Khodarahmi, R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes. Food Funct., 2017, 8(5), 1942-1954. doi: 10.1039/C7FO00220C PMID: 28470323
- Kuzu, M.; Kandemir, F.M.; Yıldırım, S.; Çağlayan, C.; Küçükler, S. Attenuation of sodium arsenite-induced cardiotoxicity and neurotoxicity with the antioxidant, anti-inflammatory, and antiapoptotic effects of hesperidin. Environ. Sci. Pollut. Res. Int., 2021, 28(9), 10818-10831. doi: 10.1007/s11356-020-11327-5 PMID: 33099738
- Turk, E.; Kandemir, F.M.; Yildirim, S.; Caglayan, C.; Kucukler, S.; Kuzu, M. Protective effect of hesperidin on sodium arsenite-induced nephrotoxicity and hepatotoxicity in rats. Biol. Trace Elem. Res., 2019, 189(1), 95-108. doi: 10.1007/s12011-018-1443-6 PMID: 30066062
- Li, B.; Huang, A.L.; Zhang, Y.L.; Li, Z.; Ding, H.W.; Huang, C.; Meng, X.M.; Li, J. Design, synthesis and evaluation of hesperetin derivatives as potential multifunctional anti-alzheimer agents. Molecules, 2017, 22(7), 1067. doi: 10.3390/molecules22071067 PMID: 28672874
- Chen, D.W.; Du, Z.; Zhang, C.Z.; Zhang, W.H.; Cao, Y.F.; Sun, H.Z.; Zhu, Z.T.; Yang, K.; Liu, Y.Z.; Zhao, Z.W.; Fu, Z.W.; Gu, W.Q.; Yu, Y.; Fang, Z.Z. The inhibition of UDP-glucuronosyltransferases (UGTs) by tetraiodothyronine (T4) and triiodothyronine (T3). Xenobiotica, 2018, 48(3), 250-257. doi: 10.1080/00498254.2017.1304593 PMID: 28285550
- Fu, A.L.; Zhou, C.Y.; Chen, X. Thyroid hormone prevents cognitive deficit in a mouse model of Alzheimers disease. Neuropharmacology, 2010, 58(4-5), 722-729. doi: 10.1016/j.neuropharm.2009.12.020 PMID: 20045708
- Kizilbay, G.; Karaman, M. Possible inhibition mechanism of dobutamine hydrochloride as potent inhibitor for human glucose-6-phosphate dehydrogenase enzyme. J. Biomol. Struct. Dyn., 2022, 40(1), 204-212. doi: 10.1080/07391102.2020.1811155 PMID: 32835622
- Hassan, M.; Raza, H.; Abbasi, M.A.; Moustafa, A.A.; Seo, S.Y. The exploration of novel Alzheimers therapeutic agents from the pool of FDA approved medicines using drug repositioning, enzyme inhibition and kinetic mechanism approaches. Biomed. Pharmacother., 2019, 109, 2513-2526. doi: 10.1016/j.biopha.2018.11.115 PMID: 30551512
- Ashrafian, H.; Zadeh, E.H.; Khan, R.H. Review on Alzheimers disease: Inhibition of amyloid beta and tau tangle formation. Int. J. Biol. Macromol., 2021, 167, 382-394. doi: 10.1016/j.ijbiomac.2020.11.192 PMID: 33278431
- Popescu, I.; Yin, G.; Velmurugan, S.; Erickson, J.R.; Despa, F.; Despa, S. Lower sarcoplasmic reticulum Ca2+ threshold for triggering afterdepolarizations in diabetic rat hearts. Heart Rhythm, 2019, 16(5), 765-772. doi: 10.1016/j.hrthm.2018.11.001 PMID: 30414461
- Sugimoto, H.; Ogura, H.; Arai, Y.; Iimura, Y.; Yamanishi, Y. Research and development of donepezil hydrochloride, a new type of acetylcholinesterase inhibitor. Jpn. J. Pharmacol., 2002, 89(1), 7-20. doi: 10.1254/jjp.89.7 PMID: 12083745
- Syaifie, P.H.; Widya Hemasita, A.; Nugroho, D.W.; Mardliyati, E.; Anshori, I. In Silico investigation of propolis compounds as potential neuroprotective agent. Biointerface Res. Appl. Chem., 2021, 12(6), 8285-8306. doi: 10.33263/BRIAC126.82858306
- Vitorović-Todorović, M.; Cvijetić, I.; Zloh, M.; Perdih, A. Molecular recognition of acetylcholinesterase and its subnanomolar reversible inhibitor: A molecular simulations study. J. Biomol. Struct. Dyn., 2022, 40(4), 1671-1691. doi: 10.1080/07391102.2020.1831960 PMID: 33047663
- Aleixandre, A.; Gil, J.V.; Sineiro, J.; Rosell, C.M. Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chem., 2022, 372, 131231. doi: 10.1016/j.foodchem.2021.131231 PMID: 34624776
- Li, Y.; Sang, S.; Ren, W.; Pei, Y.; Bian, Y.; Chen, Y.; Sun, H. Inhibition of Histone Deacetylase 6 (HDAC6) as a therapeutic strategy for Alzheimers disease: A review (2010-2020). Eur. J. Med. Chem., 2021, 226, 113874. doi: 10.1016/j.ejmech.2021.113874 PMID: 34619465
- Padhi, S.; Dash, M.; Behera, A. Nanophytochemicals for the treatment of type II diabetes mellitus: A review. Environ. Chem. Lett., 2021, 19(6), 4349-4373. doi: 10.1007/s10311-021-01283-y
Supplementary files
