Unearthing Insights into Metabolic Syndrome by Linking Drugs, Targets, and Gene Expressions Using Similarity Measures and Graph Theory


Cite item

Full Text

Abstract

Aims and Objectives:Metabolic syndrome (MetS) is a group of metabolic disorders that includes obesity in combination with at least any two of the following conditions, i.e., insulin resistance, high blood pressure, low HDL cholesterol, and high triglycerides level. Treatment of this syndrome is challenging because of the multiple interlinked factors that lead to increased risks of type-2 diabetes and cardiovascular diseases. This study aims to conduct extensive insilico analysis to (i) find central genes that play a pivotal role in MetS and (ii) propose suitable drugs for therapy. Our objective is to first create a drug-disease network and then identify novel genes in the drug-disease network with strong associations to drug targets, which can help in increasing the therapeutical effects of different drugs. In the future, these novel genes can be used to calculate drug synergy and propose new drugs for the effective treatment of MetS.

Methods:For this purpose, we (i) investigated associated drugs and pathways for MetS, (ii) employed eight different similarity measures to construct eight gene regulatory networks, (iii) chose an optimal network, where a maximum number of drug targets were central, (iv) determined central genes exhibiting strong associations with these drug targets and associated disease-causing pathways, and lastly (v) employed these candidate genes to propose suitable drugs.

Results:Our results indicated (i) a novel drug-disease network complex, with (ii) novel genes associated with MetS.

Conclusion:Our developed drug-disease network complex closely represents MetS with associated novel findings and markers for an improved understanding of the disease and suggested therapy.

About the authors

Alwaz Zafar

Ibn Sina Research & Development Division, Sabz-Qalam

Email: info@benthamscience.net

Bilal Wajid

Ibn Sina Research & Development Division,, Sabz-Qalam

Author for correspondence.
Email: info@benthamscience.net

Ans Shabbir

Ibn Sina Research & Development Division, Sabz-Qalam

Email: info@benthamscience.net

Fahim Gohar Awan

Department of Electrical Engineering,, University of Engineering and Technology

Email: info@benthamscience.net

Momina Ahsan

Ibn Sina Research & Development Division, Sabz-Qalam

Email: info@benthamscience.net

Sarfraz Ahmad

Ibn Sina Research & Development Division, Sabz Qalam

Email: info@benthamscience.net

Imran Wajid

Ibn Sina Research & Development Division, Sabz-Qalam

Email: info@benthamscience.net

Faria Anwar

Outpatient Department, Mayo Hospital

Email: info@benthamscience.net

Fazeelat Mazhar

Department of Biomedical, Electrical and System Engineering,, University of Bologna

Email: info@benthamscience.net

References

  1. Silveira Rossi, J.L.; Barbalho, S.M.; Reverete de Araujo, R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab. Res. Rev., 2022, 38(3), e3502. doi: 10.1002/dmrr.3502 PMID: 34614543
  2. Kaur, J. A comprehensive review on metabolic syndrome. Cardiol. Res. Pract., 2014, 2014, 1-21. doi: 10.1155/2014/943162 PMID: 24711954
  3. Scuteri, A.; Laurent, S.; Cucca, F.; Cockcroft, J.; Cunha, P.G.; Mañas, L.R.; Raso, F.U.M.; Muiesan, M.L.; Ryliškytė, L.; Rietzschel, E.; Strait, J.; Vlachopoulos, C.; Völzke, H.; Lakatta, E.G.; Nilsson, P.M. Metabolic syndrome across Europe: Different clusters of risk factors. Eur. J. Prev. Cardiol., 2015, 22(4), 486-491. doi: 10.1177/2047487314525529 PMID: 24647805
  4. Ansarimoghaddam, A.; Adineh, H.A.; Zareban, I.; Iranpour, S.; HosseinZadeh, A.; Kh, F. Prevalence of metabolic syndrome in Middle-East countries: Meta-analysis of cross-sectional studies. Diabetes Metab. Syndr., 2018, 12(2), 195-201. doi: 10.1016/j.dsx.2017.11.004 PMID: 29203060
  5. Mezhal, F.; Ahmad, A.; Abdulle, A.; Leinberger-Jabari, A.; Oulhaj, A.; AlJunaibi, A.; Alnaeemi, A.; Al Dhaheri, A.S.; AlZaabi, E.; Al-Maskari, F.; AlAnouti, F.; Alsafar, H.; Alkaabi, J.; Wareth, L.A.; Aljaber, M.; Kazim, M.; Alblooshi, M.; Al-Houqani, M.; Hag Ali, M.; Oumeziane, N.; El-Shahawy, O.; Al-Rifai, R.H.; Sherman, S.; Shah, S.M.; Loney, T.; Almahmeed, W.; Idaghdour, Y.; Ahmed, L.A.; Ali, R. Metabolic syndrome in fasting and non-fasting participants: The UAE healthy future study. Int. J. Environ. Res. Public Health, 2022, 19(21), 13757. doi: 10.3390/ijerph192113757 PMID: 36360639
  6. Lee, S.B.; Kwon, H.C.; Kang, M.I.; Park, Y.B.; Park, J.Y.; Lee, S.W. Increased prevalence rate of metabolic syndrome is an independent predictor of cardiovascular disease in patients with antineutrophil cytoplasmic antibody-associated vasculitis. Rheumatol. Int., 2022, 42(2), 291-302. doi: 10.1007/s00296-021-04908-1 PMID: 34086074
  7. Kovalkova, N.A.; Ragino, Y.I.; Travnikova, N.Y.; Denisova, D.V.; Shcherbakova, L.V.; Voevoda, M.I. Associations between metabolic syndrome and reduced lung function in young people. Ter. Arkh., 2017, 89(10), 54-61. doi: 10.17116/terarkh2017891054-61 PMID: 29171471
  8. Medeiros, M.M.C.; Xavier de Oliveira, Í.M.A.; Ribeiro, Á.T.M. Prevalence of metabolic syndrome in a cohort of systemic lupus erythematosus patients from Northeastern Brazil: Association with disease activity, nephritis, smoking, and age. Rheumatol. Int., 2016, 36(1), 117-124. doi: 10.1007/s00296-015-3316-z PMID: 26149124
  9. Moore, J.X.; Chaudhary, N.; Akinyemiju, T. Metabolic syndrome prevalence by race/ethnicity and sex in the United States, National health and nutrition examination survey, 1988-2012. Prev. Chronic Dis., 2017, 14(14), 160287. doi: 10.5888/pcd14.160287 PMID: 28301314
  10. Yang, C.; Jia, X.; Wang, Y.; Fan, J.; Zhao, C.; Yang, Y.; Shi, X.; Chen, Y.; Sun, Y.; Yu, Y.; Guo, X.; Li, Y.; He, J.; Xu, X.; Xiong, Y.; Hu, D. Trends and influence factors in the prevalence, intervention, and control of metabolic syndrome among US adults, 1999-2018. BMC Geriatr., 2022, 22(1), 979. doi: 10.1186/s12877-022-03672-6 PMID: 36536296
  11. Voss, J.D.; Masuoka, P.; Webber, B.J.; Scher, A.I.; Atkinson, R.L. Association of elevation, urbanization and ambient temperature with obesity prevalence in the United States. Int. J. Obes., 2013, 37(10), 1407-1412. doi: 10.1038/ijo.2013.5 PMID: 23357956
  12. Slack, T.; Myers, C.A.; Martin, C.K.; Heymsfield, S.B. The geographic concentration of us adult obesity prevalence and associated social, economic, and environmental factors. Obesity, 2014, 22(3), 868-874. doi: 10.1002/oby.20502 PMID: 23630100
  13. Krijnen, H.K.; Hoveling, L.A.; Liefbroer, A.C.; Bültmann, U.; Smidt, N. Socioeconomic differences in metabolic syndrome development among males and females, and the mediating role of health literacy and self-management skills. Prev. Med., 2022, 161, 107140. doi: 10.1016/j.ypmed.2022.107140 PMID: 35803357
  14. Beltrán-Sánchez, H.; Harhay, M.O.; Harhay, M.M.; McElligott, S. Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999-2010. J. Am. Coll. Cardiol., 2013, 62(8), 697-703. doi: 10.1016/j.jacc.2013.05.064 PMID: 23810877
  15. Andrew J., K.; Angelo, S. Insulin resistance and the metabolic syndrome. In: Diabetes in Old Age; Wiley Online Library, 2017; pp. 177-212. doi: 10.1002/9781118954621.ch15
  16. Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic syndrome-a new world-wide definition. A consensus statement from the international diabetes federation. Diabet. Med., 2006, 23(5), 469-480. doi: 10.1111/j.1464-5491.2006.01858.x PMID: 16681555
  17. Han, J.M.; Levings, M.K. Immune regulation in obesity-associated adipose inflammation. J. Immunol., 2013, 191(2), 527-532. doi: 10.4049/jimmunol.1301035 PMID: 23825387
  18. Olefsky, J.M.; Glass, C.K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol., 2010, 72(1), 219-246. doi: 10.1146/annurev-physiol-021909-135846 PMID: 20148674
  19. Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Invest., 2006, 116(7), 1793-1801. doi: 10.1172/JCI29069 PMID: 16823477
  20. Grundy, S.M.; Hansen, B.; Smith, S.C., Jr; Cleeman, J.I.; Kahn, R.A. Clinical management of metabolic syndrome: report of the american heart association/national heart, lung, and blood institute/american diabetes association conference on scientific issues related to management. Circulation, 2004, 109(4), 551-556. doi: 10.1161/01.CIR.0000112379.88385.67 PMID: 14757684
  21. Metwaly, A.; Reitmeier, S.; Haller, D. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nat. Rev. Gastroenterol. Hepatol., 2022, 19(6), 383-397. doi: 10.1038/s41575-022-00581-2 PMID: 35190727
  22. Salleh, M.; Hani, F. Reconstructing gene regulatory networks from knock-out data using gaussian noise model and pearson correlation coefficient. Comput. Biol. Chem., 2015, 59(Pt B), 3-14. doi: 10.1016/j.compbiolchem.2015.04.012
  23. Pripp, Are Hugo Pearson's or Spearman's correlation coefficients. Tidsskr. Nor. Laegeforen., 2018, 138(8), (10). doi: 10.4045/tidsskr.18.0042
  24. Ma, Y. On inference for kendall's τ within a longitudinal data setting. J. Appl. Stat., 2012, 39(11), 2441-2452. doi: 10.1080/02664763.2012.712954 PMID: 23554542
  25. Yan, Xiting; Anqi, L; Jose, G A novel pathway-based distance score enhances assessment of disease heterogeneity in gene expression. BMC Bioinformatics., 2017, 18(1), 309. doi: 10.1186/s12859-017-1727-4
  26. Kirişci, M. New cosine similarity and distance measures for Fermatean fuzzy sets and TOPSIS approach. Knowl. Inf. Syst., 2023, 65(2), 855-868. doi: 10.1007/s10115-022-01776-4 PMID: 36373008
  27. Rao Kakita, V.M.; Ramakrishna, V.H. Mahalanobis distance correlation: A novel approach for quantitating changes in multidimensional NMR spectra in biological applications. J. Magn. Reson., 2022, 337, 107165. doi: 10.1016/j.jmr.2022.107165
  28. Xu, H.; Zeng, W.; Zeng, X.; Yen, G.G. An evolutionary algorithm based on minkowski distance for many-objective optimization. IEEE Trans. Cybern., 2019, 49(11), 3968-3979. doi: 10.1109/TCYB.2018.2856208 PMID: 30059330
  29. Lesk, A.M. Extraction of geometrically similar substructures: Least-squares and Chebyshev fitting and the difference distance matrix. Proteins, 1998, 33(3), 320-328. doi: 10.1002/(SICI)1097-0134(19981115)33:33.0.CO;2-Q PMID: 9829692
  30. Xu, X.M.; Liu, Y.; Feng, Y.; Xu, J.J.; Gao, J.; Salvi, R.; Wu, Y.; Yin, X.; Chen, Y.C. Degree centrality and functional connections in presbycusis with and without cognitive impairments. Brain Imaging Behav., 2022, 16(6), 2725-2734. doi: 10.1007/s11682-022-00734-6 PMID: 36327020
  31. Li, G.; Li, M.; Wang, J.; Li, Y.; Pan, Y. United neighborhood closeness centrality and orthology for predicting essential proteins. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2018, 17(4), 1. doi: 10.1109/TCBB.2018.2889978 PMID: 30596582
  32. Rungta, Pranay Deep Identifying nodal properties that are crucial for the dynamical robustness of multistable networks. Phys. Rev. E., 2018, 98((2-1)), 022314. doi: 10.1103/PhysRevE.98.022314
  33. Taylor, D.; Myers, S.A.; Clauset, A.; Porter, M.A.; & Mucha, P.J. Eigenvector-based centrality measures for temporal networks. Multiscale Model. Simul., 2017, 15(1), 537-574. doi: 10.1137/16M1066142
  34. Higham, D.J.; Higham, N.J. MATLAB guide. In: Philadelphia; SIAM: PA, USA, 2016; 150, .
  35. Kamburov, A.; Herwig, R. ConsensusPathDB 2022: Molecular interactions update as a resource for network biology. Nucleic Acids Res., 2022, 50(D1), D587-D595. doi: 10.1093/nar/gkab1128 PMID: 34850110
  36. Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 2009, 4(1), 44-57. doi: 10.1038/nprot.2008.211 PMID: 19131956
  37. Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 2017, 45(D1), D353-D361. doi: 10.1093/nar/gkw1092 PMID: 27899662
  38. Zeng, X.; Tu, X.; Liu, Y.; Fu, X.; Su, Y.; Ruan, Z.; Cui, F.; Jiang, H.; Zhou, Y.; Hu, H. Toward better drug discovery with knowledge graph. Curr. Opin. Struct. Biol., 2022, 72, 114-126. doi: 10.1016/j.sbi.2021.09.003 PMID: 34649044
  39. Kleinbongard, P.; Lieder, H.R.; Skyschally, A.; Alloosh, M.; Gödecke, A.; Rahmann, S.; Sturek, M.; Heusch, G. Non-responsiveness to cardioprotection by ischaemic preconditioning in Ossabaw minipigs with genetic predisposition to, but without the phenotype of the metabolic syndrome. Basic Res. Cardiol., 2022, 117(1), 58. doi: 10.1007/s00395-022-00965-0 PMID: 36374343
  40. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613. doi: 10.1093/nar/gky1131 PMID: 30476243
  41. GEO Accession viewer. Available from: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44000
  42. KEGG DISEASE: Genetic Obesity. Available from: www.genome.jp/entry/H02106.
  43. KEGG PATHWAY: Insulin Resistance - Homo Sapiens (Human). Available from: www.genome.jp/kegg-bin/show_pathway?hsa0493
  44. KEGG PATHWAY: Type I Diabetes Mellitus - Homo Sapiens (Human). Available from: www.genome.jp/kegg-bin/show_pathway?hsa04940.
  45. KEGG PATHWAY: Type II Diabetes Mellitus - Homo Sapiens (Human). Available from: www.genome.jp/kegg-bin/show_pathway?hsa04930
  46. KEGG PATHWAY: Fluid Shear Stress and Atherosclerosis - Homo Sapiens (Human). Available from: www.genome.jp/kegg-bin/show_pathway?hsa05418.
  47. Yin, Z.; Deng, T.; Peterson, L.E.; Yu, R.; Lin, J.; Hamilton, D.J.; Reardon, P.R.; Sherman, V.; Winnier, G.E.; Zhan, M.; Lyon, C.J.; Wong, S.T.C.; Hsueh, W.A. Transcriptome analysis of human adipocytes implicates the NOD-like receptor pathway in obesity-induced adipose inflammation. Mol. Cell. Endocrinol., 2014, 394(1-2), 80-87. doi: 10.1016/j.mce.2014.06.018 PMID: 25011057
  48. Brazil, D.P.; Hemmings, B.A. Ten years of protein kinase B signalling: A hard Akt to follow. Trends Biochem. Sci., 2001, 26(11), 657-664. doi: 10.1016/S0968-0004(01)01958-2 PMID: 11701324
  49. Keshet, Y.; Seger, R. The MAP kinase signaling cascades: A system of hundreds of components regulates a diverse array of physiological functions. Methods Mol. Biol., 2010, 661, 3-38. doi: 10.1007/978-1-60761-795-2_1 PMID: 20811974
  50. Zhang, W.; Liu, H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res., 2002, 12(1), 9-18. doi: 10.1038/sj.cr.7290105 PMID: 11942415

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers