The Diagnostic Features of Peripheral Blood Biomarkers in Identifying Osteoarthritis Individuals: Machine Learning Strategies and Clinical Evidence

  • Authors: Zhou Q.1, Liu J.2, Xin L.3, Hu Y.4, Qi Y.3
  • Affiliations:
    1. Department of Rheumatism Immunity,, The First Affiliated Hospital of Anhui University of Chinese Medicine,
    2. Department of Rheumatism Immunity, Anhui University of Chinese Medicine
    3. Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences
    4. Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine,, Anhui Academy of Chinese Medicine Sciences
  • Issue: Vol 20, No 6 (2024)
  • Pages: 928-942
  • Section: Chemistry
  • URL: https://ruspoj.com/1573-4099/article/view/644420
  • DOI: https://doi.org/10.2174/1573409920666230818092427
  • ID: 644420

Cite item

Full Text

Abstract

Background:People with osteoarthritis place a huge burden on society. Early diagnosis is essential to prevent disease progression and to select the best treatment strategy more effectively. In this study, the aim was to examine the diagnostic features and clinical value of peripheral blood biomarkers for osteoarthritis.

Objective:The goal of this project was to investigate the diagnostic features of peripheral blood and immune cell infiltration in osteoarthritis (OA).

Methods:Two eligible datasets (GSE63359 and GSE48556) were obtained from the GEO database to discern differentially expressed genes (DEGs). The machine learning strategy was employed to filtrate diagnostic biomarkers for OA. Additional verification was implemented by collecting clinical samples of OA. The CIBERSORT website estimated relative subsets of RNA transcripts to evaluate the immune-inflammatory states of OA. The link between specific DEGs and clinical immune-inflammatory markers was found by correlation analysis.

Results:Overall, 67 robust DEGs were identified. The nuclear receptor subfamily 2 group C member 2 (NR2C2), transcription factor 4 (TCF4), stromal antigen 1 (STAG1), and interleukin 18 receptor accessory protein (IL18RAP) were identified as effective diagnostic markers of OA in peripheral blood. All four diagnostic markers showed significant increases in expression in OA. Analysis of immune cell infiltration revealed that macrophages are involved in the occurrence of OA. Candidate diagnostic markers were correlated with clinical immune-inflammatory indicators of OA patients.

Conclusion:We highlight that DEGs associated with immune inflammation (NR2C2, TCF4, STAG1, and IL18RAP) may be potential biomarkers for peripheral blood in OA, which are also associated with clinical immune-inflammatory indicators.

About the authors

Qiao Zhou

Department of Rheumatism Immunity,, The First Affiliated Hospital of Anhui University of Chinese Medicine,

Email: info@benthamscience.net

Jian Liu

Department of Rheumatism Immunity, Anhui University of Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

Ling Xin

Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences

Email: info@benthamscience.net

Yuedi Hu

Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine,, Anhui Academy of Chinese Medicine Sciences

Email: info@benthamscience.net

Yajun Qi

Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences

Email: info@benthamscience.net

References

  1. Sanchez-Lopez, E.; Coras, R.; Torres, A.; Lane, N.E.; Guma, M. Synovial inflammation in osteoarthritis progression. Nat. Rev. Rheumatol., 2022, 18(5), 258-275. doi: 10.1038/s41584-022-00749-9 PMID: 35165404
  2. Yu, R.; Zhang, J.; Zhuo, Y.; Hong, X.; Ye, J.; Tang, S.; Zhang, Y. Identification of diagnostic signatures and immune cell infiltration characteristics in rheumatoid arthritis by integrating bioinformatic analysis and machine-learning strategies. Front. Immunol., 2021, 12, 724934. doi: 10.3389/fimmu.2021.724934 PMID: 34691030
  3. Bhandari, N.; Walambe, R.; Kotecha, K.; Khare, S.P. A comprehensive survey on computational learning methods for analysis of gene expression data. Front. Mol. Biosci., 2022, 9, 907150. doi: 10.3389/fmolb.2022.907150 PMID: 36458095
  4. Haubruck, P.; Pinto, M.M.; Moradi, B.; Little, C.B.; Gentek, R. Monocytes, macrophages, and their potential niches in synovial joints - therapeutic targets in post-traumatic osteoarthritis? Front. Immunol., 2021, 12(12), 763702. doi: 10.3389/fimmu.2021.763702 PMID: 34804052
  5. Zhao, Y.; Xia, Y.; Kuang, G.; Cao, J.; Shen, F.; Zhu, M. Cross-tissue analysis using machine learning to identify novel biomarkers for knee osteoarthritis. Comput. Math. Methods Med., 2022, 2022, 1-21. doi: 10.1155/2022/9043300 PMID: 35785145
  6. Hu, X.; Ni, S.; Zhao, K.; Qian, J.; Duan, Y. Bioinformatics-led discovery of osteoarthritis biomarkers and inflammatory infiltrates. Front. Immunol., 2022, 13, 871008. doi: 10.3389/fimmu.2022.871008 PMID: 35734177
  7. Liang, Y.; Lin, F.; Huang, Y. Identification of biomarkers associated with diagnosis of osteoarthritis patients based on bioinformatics and machine learning. J. Immunol. Res., 2022, 2022, 1-11. doi: 10.1155/2022/5600190 PMID: 35733917
  8. Le, T.; Aronow, R.A.; Kirshtein, A.; Shahriyari, L. A review of digital cytometry methods: estimating the relative abundance of cell types in a bulk of cells. Brief. Bioinform., 2021, 22(4), bbaa219. doi: 10.1093/bib/bbaa219 PMID: 33003193
  9. Ramos, Y.F.M.; Bos, S.D.; Lakenberg, N.; Böhringer, S.; den Hollander, W.J.; Kloppenburg, M.; Slagboom, P.E.; Meulenbelt, I. Genes expressed in blood link osteoarthritis with apoptotic pathways. Ann. Rheum. Dis., 2014, 73(10), 1844-1853. doi: 10.1136/annrheumdis-2013-203405 PMID: 23864235
  10. Irizarry, R.A.; Hobbs, B.; Collin, F.; Beazer-Barclay, Y.D.; Antonellis, K.J.; Scherf, U.; Speed, T.P. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 2003, 4(2), 249-264. doi: 10.1093/biostatistics/4.2.249 PMID: 12925520
  11. Kolde, R.; Laur, S.; Adler, P.; Vilo, J. Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics, 2012, 28(4), 573-580. doi: 10.1093/bioinformatics/btr709 PMID: 22247279
  12. Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res., 2023, 51(D1), D587-D592. doi: 10.1093/nar/gkac963 PMID: 36300620
  13. Reimand, J.; Isserlin, R.; Voisin, V.; Kucera, M.; Tannus-Lopes, C.; Rostamianfar, A.; Wadi, L.; Meyer, M.; Wong, J.; Xu, C.; Merico, D.; Bader, G.D. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc., 2019, 14(2), 482-517. doi: 10.1038/s41596-018-0103-9 PMID: 30664679
  14. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B, 1996, 58(1), 267-288. doi: 10.1111/j.2517-6161.1996.tb02080.x
  15. Pan, X.Y.; Shen, H.B. Robust prediction of B-factor profile from sequence using two-stage SVR based on random forest feature selection. Protein Pept. Lett., 2009, 16(12), 1447-1454. doi: 10.2174/092986609789839250 PMID: 20001907
  16. Butkiewicz, M.; Lowe, E., Jr; Mueller, R.; Mendenhall, J.; Teixeira, P.; Weaver, C.; Meiler, J. Benchmarking ligand-based virtual High-Throughput Screening with the PubChem database. Molecules, 2013, 18(1), 735-756. doi: 10.3390/molecules18010735 PMID: 23299552
  17. Zhang, B.; Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol., 2005, 4(1), e17. doi: 10.2202/1544-6115.1128 PMID: 16646834
  18. Breiman, L. Random forests. Mach. Learn., 2001, 45(1), 5-32. doi: 10.1023/A:1010933404324
  19. Jiang, F.; Kutia, M.; Sarkissian, A.J.; Lin, H.; Long, J.; Sun, H.; Wang, G. Estimating the growing stem volume of coniferous plantations based on random forest using an optimized variable selection method. Sensors (Basel), 2020, 20(24), 7248. doi: 10.3390/s20247248 PMID: 33348807
  20. Nakao, H.; Imaoka, M.; Hida, M.; Imai, R.; Nakamura, M.; Matsumoto, K.; Kita, K. Determination of individual factors associated with hallux valgus using SVM-RFE. BMC Musculoskelet. Disord., 2023, 24(1), 534. doi: 10.1186/s12891-023-06303-2 PMID: 37386376
  21. Katsoula, G.; Kreitmaier, P.; Zeggini, E. Insights into the molecular landscape of osteoarthritis in human tissues. Curr. Opin. Rheumatol., 2022, 34(1), 79-90. doi: 10.1097/BOR.0000000000000853 PMID: 34750308
  22. Nedunchezhiyan, U.; Varughese, I.; Sun, A.R.; Wu, X.; Crawford, R.; Prasadam, I. Obesity, inflammation, and immune system in osteoarthritis. Front. Immunol., 2022, 13(13), 907750. doi: 10.3389/fimmu.2022.907750 PMID: 35860250
  23. Visconti, V.V.; Cariati, I.; Fittipaldi, S.; Iundusi, R.; Gasbarra, E.; Tarantino, U.; Botta, A. DNA methylation signatures of bone metabolism in osteoporosis and osteoarthritis aging-related diseases: An updated review. Int. J. Mol. Sci., 2021, 22(8), 4244. doi: 10.3390/ijms22084244 PMID: 33921902
  24. Videtič Paska, A.; Kouter, K. Machine learning as the new approach in understanding biomarkers of suicidal behavior. Bosn. J. Basic Med. Sci., 2021, 21(4), 398-408. PMID: 33485296
  25. Wu, L.; Guo, H.; Sun, K.; Zhao, X.; Ma, T.; Jin, Q. Sclerostin expression in the subchondral bone of patients with knee osteoarthritis. Int. J. Mol. Med., 2016, 38(5), 1395-1402. doi: 10.3892/ijmm.2016.2741 PMID: 27665782
  26. Wang, J.; Fang, L.; Ye, L.; Ma, S.; Huang, H.; Lan, X.; Ma, J. miR-137 targets the inhibition of TCF4 to reverse the progression of osteoarthritis through the AMPK/NF-κB signaling pathway. Biosci. Rep., 2020, 40(6), BSR20200466. doi: 10.1042/BSR20200466 PMID: 32432314
  27. Tian, J.; Gao, S.G.; Li, Y.S.; Cheng, C.; Deng, Z.H.; Luo, W.; Zhang, F.J. The β-catenin/TCF-4 pathway regulates the expression of OPN in human osteoarthritic chondrocytes. J. Orthop. Surg. Res., 2020, 15(1), 344. doi: 10.1186/s13018-020-01881-6 PMID: 32819387
  28. Anazawa, Y.; Arakawa, H.; Nakagawa, H.; Nakamura, Y. Identification of STAG1 as a key mediator of a p53-dependent apoptotic pathway. Oncogene, 2004, 23(46), 7621-7627. doi: 10.1038/sj.onc.1207270 PMID: 15361841
  29. Klatt, A.R.; Klinger, G.; Neumüller, O.; Eidenmüller, B.; Wagner, I.; Achenbach, T.; Aigner, T.; Bartnik, E. TAK1 downregulation reduces IL-1β induced expression of MMP13, MMP1 and TNF-alpha. Biomed. Pharmacother., 2006, 60(2), 55-61. doi: 10.1016/j.biopha.2005.08.007 PMID: 16459052
  30. Klatt, A.R.; Klinger, G.; Paul-Klausch, B.; Renno, J.H.; Schmidt, J.; Malchau, G.; Wielckens, K. TAK1 mediates the collagen-II-dependent induction of the COX-2 gene and PGE2 release in primary human chondrocytes. Connect. Tissue Res., 2010, 51(6), 452-458. doi: 10.3109/03008201003668360 PMID: 20604713
  31. Hedl, M.; Zheng, S.; Abraham, C. The IL18RAP region disease polymorphism decreases IL-18RAP/IL-18R1/IL-1R1 expression and signaling through innate receptor-initiated pathways. J. Immunol., 2014, 192(12), 5924-5932. doi: 10.4049/jimmunol.1302727 PMID: 24842757
  32. Cherlin, S.; Lewis, M.J.; Plant, D.; Nair, N.; Goldmann, K.; Tzanis, E.; Barnes, M.R.; McKeigue, P.; Barrett, J.H.; Pitzalis, C.; Barton, A.; Cordell, H.J. Investigation of genetically regulated gene expression and response to treatment in rheumatoid arthritis highlights an association between IL18RAP expression and treatment response. Ann. Rheum. Dis., 2020, 79(11), 1446-1452. doi: 10.1136/annrheumdis-2020-217204 PMID: 32732242
  33. Sun, Y.; Zuo, Z.; Kuang, Y. An Emerging target in the battle against osteoarthritis: Macrophage polarization. Int. J. Mol. Sci., 2020, 21(22), 8513. doi: 10.3390/ijms21228513 PMID: 33198196
  34. Wang, L.; He, C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front. Immunol., 2022, 13, 967193. doi: 10.3389/fimmu.2022.967193 PMID: 36032081
  35. Rosshirt, N.; Trauth, R.; Platzer, H.; Tripel, E.; Nees, T.A.; Lorenz, H.M.; Tretter, T.; Moradi, B. Proinflammatory T cell polarization is already present in patients with early knee osteoarthritis. Arthritis Res. Ther., 2021, 23(1), 37. doi: 10.1186/s13075-020-02410-w PMID: 33482899
  36. Shiokawa, S.; Matsumoto, N.; Nishimura, J. Clonal analysis of B cells in the osteoarthritis synovium. Ann. Rheum. Dis., 2001, 60(8), 802-805. doi: 10.1136/ard.60.8.802 PMID: 11454647
  37. Brauning, A.; Rae, M.; Zhu, G.; Fulton, E.; Admasu, T.D.; Stolzing, A.; Sharma, A. Aging of the immune system: Focus on natural killer cells phenotype and functions. Cells, 2022, 11(6), 1017. doi: 10.3390/cells11061017 PMID: 35326467

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers