The Diagnostic Features of Peripheral Blood Biomarkers in Identifying Osteoarthritis Individuals: Machine Learning Strategies and Clinical Evidence
- Authors: Zhou Q.1, Liu J.2, Xin L.3, Hu Y.4, Qi Y.3
-
Affiliations:
- Department of Rheumatism Immunity,, The First Affiliated Hospital of Anhui University of Chinese Medicine,
- Department of Rheumatism Immunity, Anhui University of Chinese Medicine
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine,, Anhui Academy of Chinese Medicine Sciences
- Issue: Vol 20, No 6 (2024)
- Pages: 928-942
- Section: Chemistry
- URL: https://ruspoj.com/1573-4099/article/view/644420
- DOI: https://doi.org/10.2174/1573409920666230818092427
- ID: 644420
Cite item
Full Text
Abstract
Background:People with osteoarthritis place a huge burden on society. Early diagnosis is essential to prevent disease progression and to select the best treatment strategy more effectively. In this study, the aim was to examine the diagnostic features and clinical value of peripheral blood biomarkers for osteoarthritis.
Objective:The goal of this project was to investigate the diagnostic features of peripheral blood and immune cell infiltration in osteoarthritis (OA).
Methods:Two eligible datasets (GSE63359 and GSE48556) were obtained from the GEO database to discern differentially expressed genes (DEGs). The machine learning strategy was employed to filtrate diagnostic biomarkers for OA. Additional verification was implemented by collecting clinical samples of OA. The CIBERSORT website estimated relative subsets of RNA transcripts to evaluate the immune-inflammatory states of OA. The link between specific DEGs and clinical immune-inflammatory markers was found by correlation analysis.
Results:Overall, 67 robust DEGs were identified. The nuclear receptor subfamily 2 group C member 2 (NR2C2), transcription factor 4 (TCF4), stromal antigen 1 (STAG1), and interleukin 18 receptor accessory protein (IL18RAP) were identified as effective diagnostic markers of OA in peripheral blood. All four diagnostic markers showed significant increases in expression in OA. Analysis of immune cell infiltration revealed that macrophages are involved in the occurrence of OA. Candidate diagnostic markers were correlated with clinical immune-inflammatory indicators of OA patients.
Conclusion:We highlight that DEGs associated with immune inflammation (NR2C2, TCF4, STAG1, and IL18RAP) may be potential biomarkers for peripheral blood in OA, which are also associated with clinical immune-inflammatory indicators.
About the authors
Qiao Zhou
Department of Rheumatism Immunity,, The First Affiliated Hospital of Anhui University of Chinese Medicine,
Email: info@benthamscience.net
Jian Liu
Department of Rheumatism Immunity, Anhui University of Chinese Medicine
Author for correspondence.
Email: info@benthamscience.net
Ling Xin
Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences
Email: info@benthamscience.net
Yuedi Hu
Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine,, Anhui Academy of Chinese Medicine Sciences
Email: info@benthamscience.net
Yajun Qi
Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences
Email: info@benthamscience.net
References
- Sanchez-Lopez, E.; Coras, R.; Torres, A.; Lane, N.E.; Guma, M. Synovial inflammation in osteoarthritis progression. Nat. Rev. Rheumatol., 2022, 18(5), 258-275. doi: 10.1038/s41584-022-00749-9 PMID: 35165404
- Yu, R.; Zhang, J.; Zhuo, Y.; Hong, X.; Ye, J.; Tang, S.; Zhang, Y. Identification of diagnostic signatures and immune cell infiltration characteristics in rheumatoid arthritis by integrating bioinformatic analysis and machine-learning strategies. Front. Immunol., 2021, 12, 724934. doi: 10.3389/fimmu.2021.724934 PMID: 34691030
- Bhandari, N.; Walambe, R.; Kotecha, K.; Khare, S.P. A comprehensive survey on computational learning methods for analysis of gene expression data. Front. Mol. Biosci., 2022, 9, 907150. doi: 10.3389/fmolb.2022.907150 PMID: 36458095
- Haubruck, P.; Pinto, M.M.; Moradi, B.; Little, C.B.; Gentek, R. Monocytes, macrophages, and their potential niches in synovial joints - therapeutic targets in post-traumatic osteoarthritis? Front. Immunol., 2021, 12(12), 763702. doi: 10.3389/fimmu.2021.763702 PMID: 34804052
- Zhao, Y.; Xia, Y.; Kuang, G.; Cao, J.; Shen, F.; Zhu, M. Cross-tissue analysis using machine learning to identify novel biomarkers for knee osteoarthritis. Comput. Math. Methods Med., 2022, 2022, 1-21. doi: 10.1155/2022/9043300 PMID: 35785145
- Hu, X.; Ni, S.; Zhao, K.; Qian, J.; Duan, Y. Bioinformatics-led discovery of osteoarthritis biomarkers and inflammatory infiltrates. Front. Immunol., 2022, 13, 871008. doi: 10.3389/fimmu.2022.871008 PMID: 35734177
- Liang, Y.; Lin, F.; Huang, Y. Identification of biomarkers associated with diagnosis of osteoarthritis patients based on bioinformatics and machine learning. J. Immunol. Res., 2022, 2022, 1-11. doi: 10.1155/2022/5600190 PMID: 35733917
- Le, T.; Aronow, R.A.; Kirshtein, A.; Shahriyari, L. A review of digital cytometry methods: estimating the relative abundance of cell types in a bulk of cells. Brief. Bioinform., 2021, 22(4), bbaa219. doi: 10.1093/bib/bbaa219 PMID: 33003193
- Ramos, Y.F.M.; Bos, S.D.; Lakenberg, N.; Böhringer, S.; den Hollander, W.J.; Kloppenburg, M.; Slagboom, P.E.; Meulenbelt, I. Genes expressed in blood link osteoarthritis with apoptotic pathways. Ann. Rheum. Dis., 2014, 73(10), 1844-1853. doi: 10.1136/annrheumdis-2013-203405 PMID: 23864235
- Irizarry, R.A.; Hobbs, B.; Collin, F.; Beazer-Barclay, Y.D.; Antonellis, K.J.; Scherf, U.; Speed, T.P. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 2003, 4(2), 249-264. doi: 10.1093/biostatistics/4.2.249 PMID: 12925520
- Kolde, R.; Laur, S.; Adler, P.; Vilo, J. Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics, 2012, 28(4), 573-580. doi: 10.1093/bioinformatics/btr709 PMID: 22247279
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res., 2023, 51(D1), D587-D592. doi: 10.1093/nar/gkac963 PMID: 36300620
- Reimand, J.; Isserlin, R.; Voisin, V.; Kucera, M.; Tannus-Lopes, C.; Rostamianfar, A.; Wadi, L.; Meyer, M.; Wong, J.; Xu, C.; Merico, D.; Bader, G.D. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc., 2019, 14(2), 482-517. doi: 10.1038/s41596-018-0103-9 PMID: 30664679
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B, 1996, 58(1), 267-288. doi: 10.1111/j.2517-6161.1996.tb02080.x
- Pan, X.Y.; Shen, H.B. Robust prediction of B-factor profile from sequence using two-stage SVR based on random forest feature selection. Protein Pept. Lett., 2009, 16(12), 1447-1454. doi: 10.2174/092986609789839250 PMID: 20001907
- Butkiewicz, M.; Lowe, E., Jr; Mueller, R.; Mendenhall, J.; Teixeira, P.; Weaver, C.; Meiler, J. Benchmarking ligand-based virtual High-Throughput Screening with the PubChem database. Molecules, 2013, 18(1), 735-756. doi: 10.3390/molecules18010735 PMID: 23299552
- Zhang, B.; Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol., 2005, 4(1), e17. doi: 10.2202/1544-6115.1128 PMID: 16646834
- Breiman, L. Random forests. Mach. Learn., 2001, 45(1), 5-32. doi: 10.1023/A:1010933404324
- Jiang, F.; Kutia, M.; Sarkissian, A.J.; Lin, H.; Long, J.; Sun, H.; Wang, G. Estimating the growing stem volume of coniferous plantations based on random forest using an optimized variable selection method. Sensors (Basel), 2020, 20(24), 7248. doi: 10.3390/s20247248 PMID: 33348807
- Nakao, H.; Imaoka, M.; Hida, M.; Imai, R.; Nakamura, M.; Matsumoto, K.; Kita, K. Determination of individual factors associated with hallux valgus using SVM-RFE. BMC Musculoskelet. Disord., 2023, 24(1), 534. doi: 10.1186/s12891-023-06303-2 PMID: 37386376
- Katsoula, G.; Kreitmaier, P.; Zeggini, E. Insights into the molecular landscape of osteoarthritis in human tissues. Curr. Opin. Rheumatol., 2022, 34(1), 79-90. doi: 10.1097/BOR.0000000000000853 PMID: 34750308
- Nedunchezhiyan, U.; Varughese, I.; Sun, A.R.; Wu, X.; Crawford, R.; Prasadam, I. Obesity, inflammation, and immune system in osteoarthritis. Front. Immunol., 2022, 13(13), 907750. doi: 10.3389/fimmu.2022.907750 PMID: 35860250
- Visconti, V.V.; Cariati, I.; Fittipaldi, S.; Iundusi, R.; Gasbarra, E.; Tarantino, U.; Botta, A. DNA methylation signatures of bone metabolism in osteoporosis and osteoarthritis aging-related diseases: An updated review. Int. J. Mol. Sci., 2021, 22(8), 4244. doi: 10.3390/ijms22084244 PMID: 33921902
- Videtič Paska, A.; Kouter, K. Machine learning as the new approach in understanding biomarkers of suicidal behavior. Bosn. J. Basic Med. Sci., 2021, 21(4), 398-408. PMID: 33485296
- Wu, L.; Guo, H.; Sun, K.; Zhao, X.; Ma, T.; Jin, Q. Sclerostin expression in the subchondral bone of patients with knee osteoarthritis. Int. J. Mol. Med., 2016, 38(5), 1395-1402. doi: 10.3892/ijmm.2016.2741 PMID: 27665782
- Wang, J.; Fang, L.; Ye, L.; Ma, S.; Huang, H.; Lan, X.; Ma, J. miR-137 targets the inhibition of TCF4 to reverse the progression of osteoarthritis through the AMPK/NF-κB signaling pathway. Biosci. Rep., 2020, 40(6), BSR20200466. doi: 10.1042/BSR20200466 PMID: 32432314
- Tian, J.; Gao, S.G.; Li, Y.S.; Cheng, C.; Deng, Z.H.; Luo, W.; Zhang, F.J. The β-catenin/TCF-4 pathway regulates the expression of OPN in human osteoarthritic chondrocytes. J. Orthop. Surg. Res., 2020, 15(1), 344. doi: 10.1186/s13018-020-01881-6 PMID: 32819387
- Anazawa, Y.; Arakawa, H.; Nakagawa, H.; Nakamura, Y. Identification of STAG1 as a key mediator of a p53-dependent apoptotic pathway. Oncogene, 2004, 23(46), 7621-7627. doi: 10.1038/sj.onc.1207270 PMID: 15361841
- Klatt, A.R.; Klinger, G.; Neumüller, O.; Eidenmüller, B.; Wagner, I.; Achenbach, T.; Aigner, T.; Bartnik, E. TAK1 downregulation reduces IL-1β induced expression of MMP13, MMP1 and TNF-alpha. Biomed. Pharmacother., 2006, 60(2), 55-61. doi: 10.1016/j.biopha.2005.08.007 PMID: 16459052
- Klatt, A.R.; Klinger, G.; Paul-Klausch, B.; Renno, J.H.; Schmidt, J.; Malchau, G.; Wielckens, K. TAK1 mediates the collagen-II-dependent induction of the COX-2 gene and PGE2 release in primary human chondrocytes. Connect. Tissue Res., 2010, 51(6), 452-458. doi: 10.3109/03008201003668360 PMID: 20604713
- Hedl, M.; Zheng, S.; Abraham, C. The IL18RAP region disease polymorphism decreases IL-18RAP/IL-18R1/IL-1R1 expression and signaling through innate receptor-initiated pathways. J. Immunol., 2014, 192(12), 5924-5932. doi: 10.4049/jimmunol.1302727 PMID: 24842757
- Cherlin, S.; Lewis, M.J.; Plant, D.; Nair, N.; Goldmann, K.; Tzanis, E.; Barnes, M.R.; McKeigue, P.; Barrett, J.H.; Pitzalis, C.; Barton, A.; Cordell, H.J. Investigation of genetically regulated gene expression and response to treatment in rheumatoid arthritis highlights an association between IL18RAP expression and treatment response. Ann. Rheum. Dis., 2020, 79(11), 1446-1452. doi: 10.1136/annrheumdis-2020-217204 PMID: 32732242
- Sun, Y.; Zuo, Z.; Kuang, Y. An Emerging target in the battle against osteoarthritis: Macrophage polarization. Int. J. Mol. Sci., 2020, 21(22), 8513. doi: 10.3390/ijms21228513 PMID: 33198196
- Wang, L.; He, C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front. Immunol., 2022, 13, 967193. doi: 10.3389/fimmu.2022.967193 PMID: 36032081
- Rosshirt, N.; Trauth, R.; Platzer, H.; Tripel, E.; Nees, T.A.; Lorenz, H.M.; Tretter, T.; Moradi, B. Proinflammatory T cell polarization is already present in patients with early knee osteoarthritis. Arthritis Res. Ther., 2021, 23(1), 37. doi: 10.1186/s13075-020-02410-w PMID: 33482899
- Shiokawa, S.; Matsumoto, N.; Nishimura, J. Clonal analysis of B cells in the osteoarthritis synovium. Ann. Rheum. Dis., 2001, 60(8), 802-805. doi: 10.1136/ard.60.8.802 PMID: 11454647
- Brauning, A.; Rae, M.; Zhu, G.; Fulton, E.; Admasu, T.D.; Stolzing, A.; Sharma, A. Aging of the immune system: Focus on natural killer cells phenotype and functions. Cells, 2022, 11(6), 1017. doi: 10.3390/cells11061017 PMID: 35326467
Supplementary files
