Identification of Prognostic Markers and Potential Therapeutic Targets using Gene Expression Profiling and Simulation Studies in Pancreatic Cancer
- Authors: Singh S.1, Kaushik A.2, Gupta H.1, Jhinjharia D.1, Sahi S.1
-
Affiliations:
- School of Biotechnology, Gautam Buddha University
- Wuxi School of Medicine, Jiangnan University
- Issue: Vol 20, No 6 (2024)
- Pages: 955-973
- Section: Chemistry
- URL: https://ruspoj.com/1573-4099/article/view/644445
- DOI: https://doi.org/10.2174/1573409920666230914100826
- ID: 644445
Cite item
Full Text
Abstract
Background:Pancreatic ductal adenocarcinoma (PDAC) has a 5-year relative survival rate of less than 10% making it one of the most fatal cancers. A lack of early measures of prognosis, challenges in molecular targeted therapy, ineffective adjuvant chemotherapy, and strong resistance to chemotherapy cumulatively make pancreatic cancer challenging to manage
Objective:The present study aims to enhance understanding of the disease mechanism and its progression by identifying prognostic biomarkers, potential drug targets, and candidate drugs that can be used for therapy in pancreatic cancer.
Methods:Gene expression profiles from the GEO database were analyzed to identify reliable prognostic markers and potential drug targets. The disease's molecular mechanism and biological pathways were studied by investigating gene ontologies, KEGG pathways, and survival analysis to understand the strong prognostic power of key DEGs. FDA-approved anti-cancer drugs were screened through cell line databases, and docking studies were performed to identify drugs with high affinity for ARNTL2 and PIK3C2A. Molecular dynamic simulations of drug targets ARNTL2 and PIK3C2A in their native state and complex with nilotinib were carried out for 100 ns to validate their therapeutic potential in PDAC.
Results:Differentially expressed genes that are crucial regulators, including SUN1, PSMG3, PIK3C2A, SCRN1, and TRIAP1, were identified. Nilotinib as a candidate drug was screened using sensitivity analysis on CCLE and GDSC pancreatic cancer cell lines. Molecular dynamics simulations revealed the underlying mechanism of the binding of nilotinib with ARNTL2 and PIK3C2A and the dynamic perturbations. It validated nilotinib as a promising drug for pancreatic cancer.
Conclusion:This study accounts for prognostic markers, drug targets, and repurposed anti-cancer drugs to highlight their usefulness for translational research on developing novel therapies. Our results revealed potential and prospective clinical applications in drug targets ARNTL2, EGFR, and PI3KC2A for pancreatic cancer therapy.
About the authors
Samvedna Singh
School of Biotechnology, Gautam Buddha University
Email: info@benthamscience.net
Aman Kaushik
Wuxi School of Medicine, Jiangnan University
Email: info@benthamscience.net
Himanshi Gupta
School of Biotechnology, Gautam Buddha University
Email: info@benthamscience.net
Divya Jhinjharia
School of Biotechnology, Gautam Buddha University
Email: info@benthamscience.net
Shakti Sahi
School of Biotechnology, Gautam Buddha University
Author for correspondence.
Email: info@benthamscience.net
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GlOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33. doi: 10.3322/caac.21654 PMID: 33433946
- Waddell, N.; Pajic, M.; Patch, A.M.; Chang, D.K.; Kassahn, K.S.; Bailey, P.; Johns, A.L.; Miller, D.; Nones, K.; Quek, K.; Quinn, M.C.J.; Robertson, A.J.; Fadlullah, M.Z.H.; Bruxner, T.J.C.; Christ, A.N.; Harliwong, I.; Idrisoglu, S.; Manning, S.; Nourse, C.; Nourbakhsh, E.; Wani, S.; Wilson, P.J.; Markham, E.; Cloonan, N.; Anderson, M.J.; Fink, J.L.; Holmes, O.; Kazakoff, S.H.; Leonard, C.; Newell, F.; Poudel, B.; Song, S.; Taylor, D.; Waddell, N.; Wood, S.; Xu, Q.; Wu, J.; Pinese, M.; Cowley, M.J.; Lee, H.C.; Jones, M.D.; Nagrial, A.M.; Humphris, J.; Chantrill, L.A.; Chin, V.; Steinmann, A.M.; Mawson, A.; Humphrey, E.S.; Colvin, E.K.; Chou, A.; Scarlett, C.J.; Pinho, A.V.; Giry-Laterriere, M.; Rooman, I.; Samra, J.S.; Kench, J.G.; Pettitt, J.A.; Merrett, N.D.; Toon, C.; Epari, K.; Nguyen, N.Q.; Barbour, A.; Zeps, N.; Jamieson, N.B.; Graham, J.S.; Niclou, S.P.; Bjerkvig, R.; Grützmann, R.; Aust, D.; Hruban, R.H.; Maitra, A.; Iacobuzio-Donahue, C.A.; Wolfgang, C.L.; Morgan, R.A.; Lawlor, R.T.; Corbo, V.; Bassi, C.; Falconi, M.; Zamboni, G.; Tortora, G.; Tempero, M.A.; Gill, A.J.; Eshleman, J.R.; Pilarsky, C.; Scarpa, A.; Musgrove, E.A.; Pearson, J.V.; Biankin, A.V.; Grimmond, S.M. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 2015, 518(7540), 495-501. doi: 10.1038/nature14169 PMID: 25719666
- Falzone, L.; Lupo, G.; Rosa; Crimi, S.; Anfuso, C.D.; Salemi, R.; Rapisarda, E.; Libra, M.; Candido, S. Identification of novel micrornas and their diagnostic and prognostic significance in oral cancer. Cancers, 2019, 11(5), 610. doi: 10.3390/cancers11050610 PMID: 31052345
- Jia, D.; Li, S.; Li, D.; Xue, H.; Yang, D.; Liu, Y. Mining TCGA database for genes of prognostic value in glioblastoma microenvironment. Aging, 2018, 10(4), 592-605. doi: 10.18632/aging.101415 PMID: 29676997
- Pan, J.; Zhou, H.; Cooper, L.; Huang, J.; Zhu, S.; Zhao, X.; Ding, H.; Pan, Y.; Rong, L. LAYN is a prognostic biomarker and correlated with immune infiltrates in gastric and colon cancers. Front. Immunol., 2019, 10, 6. doi: 10.3389/fimmu.2019.00006 PMID: 30761122
- Feng, H.; Gu, Z.Y.; Li, Q.; Liu, Q.H.; Yang, X.Y.; Zhang, J.J. Identification of significant genes with poor prognosis in ovarian cancer via bioinformatical analysis. J. Ovarian Res., 2019, 12(1), 35. doi: 10.1186/s13048-019-0508-2 PMID: 31010415
- Clough, E.; Barrett, T. The gene expression omnibus database. In: Methods in Molecular Biology; Humana Press: New York, NY, 2016; pp. 93-110. doi: 10.1007/978-1-4939-3578-9_5
- Selga, E.; Oleaga, C.; Ramírez, S.; de Almagro, M.C.; Noé, V.; Ciudad, C.J. Networking of differentially expressed genes in human cancer cells resistant to methotrexate. Genome Med., 2009, 1(9), 83. doi: 10.1186/gm83 PMID: 19732436
- Barry, S.; Chelala, C.; Lines, K.; Sunamura, M.; Wang, A.; Marelli-Berg, F.M.; Brennan, C.; Lemoine, N.R.; Crnogorac-Jurcevic, T. S100P is a metastasis-associated gene that facilitates transendothelial migration of pancreatic cancer cells. Clin. Exp. Metastasis, 2013, 30(3), 251-264. doi: 10.1007/s10585-012-9532-y PMID: 23007696
- Zhang, X.; Liu, Y.; Zhang, Z.; Tan, J.; Zhang, J.; Ou, H.; Li, J.; Song, Z. Multi-omics analysis of anlotinib in pancreatic cancer and development of an anlotinib-related prognostic signature. Front. Cell Dev. Biol., 2021, 9, 649265. doi: 10.3389/fcell.2021.649265 PMID: 33748143
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47-e47. doi: 10.1093/nar/gkv007 PMID: 25605792
- Gene Ontology Consortium. The Gene Ontology (GO) project in 2006. Nucleic Acids Res., 2006, 34(90001), D322-D326. doi: 10.1093/nar/gkj021 PMID: 16381878
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 2009, 4(1), 44-57. doi: 10.1038/nprot.2008.211 PMID: 19131956
- Xie, Z.; Bailey, A.; Kuleshov, M.V.; Clarke, D.J.B.; Evangelista, J.E.; Jenkins, S.L.; Lachmann, A.; Wojciechowicz, M.L.; Kropiwnicki, E.; Jagodnik, K.M.; Jeon, M.; Maayan, A. Gene set knowledge discovery with enrichr. Curr. Protoc., 2021, 1(3), e90. doi: 10.1002/cpz1.90 PMID: 33780170
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 2017, 45(D1), D353-D361. doi: 10.1093/nar/gkw1092 PMID: 27899662
- Nagy, Á.; Lánczky, A.; Menyhárt, O.; Győrffy, B. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci. Rep., 2018, 8(1), 9227. doi: 10.1038/s41598-018-27521-y PMID: 29907753
- Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res., 2019, 47(W1), W556-W560. doi: 10.1093/nar/gkz430 PMID: 31114875
- Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.; Reddy, A.; Liu, M.; Murray, L.; Berger, M.F.; Monahan, J.E.; Morais, P.; Meltzer, J.; Korejwa, A.; Jané-Valbuena, J.; Mapa, F.A.; Thibault, J.; Bric-Furlong, E.; Raman, P.; Shipway, A.; Engels, I.H.; Cheng, J.; Yu, G.K.; Yu, J.; Aspesi, P., Jr; de Silva, M.; Jagtap, K.; Jones, M.D.; Wang, L.; Hatton, C.; Palescandolo, E.; Gupta, S.; Mahan, S.; Sougnez, C.; Onofrio, R.C.; Liefeld, T.; MacConaill, L.; Winckler, W.; Reich, M.; Li, N.; Mesirov, J.P.; Gabriel, S.B.; Getz, G.; Ardlie, K.; Chan, V.; Myer, V.E.; Weber, B.L.; Porter, J.; Warmuth, M.; Finan, P.; Harris, J.L.; Meyerson, M.; Golub, T.R.; Morrissey, M.P.; Sellers, W.R.; Schlegel, R.; Garraway, L.A. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012, 483(7391), 603-607. doi: 10.1038/nature11003 PMID: 22460905
- Yang, W.; Soares, J.; Greninger, P.; Edelman, E.J.; Lightfoot, H.; Forbes, S.; Bindal, N.; Beare, D.; Smith, J.A.; Thompson, I.R.; Ramaswamy, S.; Futreal, P.A.; Haber, D.A.; Stratton, M.R.; Benes, C.; McDermott, U.; Garnett, M.J. Genomics of drug sensitivity in cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res., 2012, 41(D1), D955-D961. doi: 10.1093/nar/gks1111 PMID: 23180760
- Smirnov, P.; Safikhani, Z.; El-Hachem, N.; Wang, D.; She, A.; Olsen, C.; Freeman, M.; Selby, H.; Gendoo, D.M.A.; Grossmann, P.; Beck, A.H.; Aerts, H.J.W.L.; Lupien, M.; Goldenberg, A.; Haibe-Kains, B. PharmacoGx: An R package for analysis of large pharmacogenomic datasets. Bioinformatics, 2016, 32(8), 1244-1246. doi: 10.1093/bioinformatics/btv723 PMID: 26656004
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242. doi: 10.1093/nar/28.1.235 PMID: 10592235
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395. doi: 10.1093/nar/gkaa971 PMID: 33151290
- Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res., 2018, 46(W1), W363-W367. doi: 10.1093/nar/gky473 PMID: 29860391
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791. doi: 10.1002/jcc.21256 PMID: 19399780
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25. doi: 10.1016/j.softx.2015.06.001
- Stroet, M.; Caron, B.; Visscher, K.M.; Geerke, D.P.; Malde, A.K.; Mark, A.E. Automated topology builder version 3.0: Prediction of solvation free enthalpies in water and hexane. J. Chem. Theory Comput., 2018, 14(11), 5834-5845. doi: 10.1021/acs.jctc.8b00768 PMID: 30289710
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38, 27-28. doi: 10.1016/0263-7855(96)00018-5 PMID: 8744570
- The PyMOL Molecular Graphics System, Version 1.8. Schrödinger, LLC; , 2015, 1, p. 8.
- Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962. doi: 10.1021/ci500020m PMID: 24850022
- Yan, H.H.; Jung, K.H.; Son, M.K.; Fang, Z.; Kim, S.J.; Ryu, Y.L.; Kim, J.; Kim, M.H.; Hong, S.S. Crizotinib exhibits antitumor activity by targeting ALK signaling not c-MET in pancreatic cancer. Oncotarget, 2014, 5(19), 9150-9168. doi: 10.18632/oncotarget.2363 PMID: 25193856
- Abdelgalil, A.A.; Al-Kahtani, H.M.; Al-Jenoobi, F.I. Chapter four - Erlotinib. Profiles of drug substances, Excipients and related methodology; Elsevier, 2020, 45, pp. 93-117. doi: 10.1016/bs.podrm.2019.10.004
- Wu, Z.; Gabrielson, A.; Hwang, J.J.; Pishvaian, M.J.; Weiner, L.M.; Zhuang, T.; Ley, L.; Marshall, J.L.; He, A.R. Phase II study of lapatinib and capecitabine in second-line treatment for metastatic pancreatic cancer. Cancer Chemother. Pharmacol., 2015, 76(6), 1309-1314. doi: 10.1007/s00280-015-2855-z PMID: 26507197
- Sacha, T.; Saglio, G. Nilotinib in the treatment of chronic myeloid leukemia. Future Oncol., 2019, 15(9), 953-965. doi: 10.2217/fon-2018-0468 PMID: 30547682
- Markham, A.; Keam, S.J. Selumetinib: First approval. Drugs, 2020, 80(9), 931-937. doi: 10.1007/s40265-020-01331-x PMID: 32504375
- Rascio, F.; Spadaccino, F.; Rocchetti, M.T.; Castellano, G.; Stallone, G.; Netti, G.S.; Ranieri, E. The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: An updated review. Cancers, 2021, 13(16), 3949. doi: 10.3390/cancers13163949 PMID: 34439105
- Conway, J.R.W.; Herrmann, D.; Evans, T.R.J.; Morton, J.P.; Timpson, P. Combating pancreatic cancer with PI3K pathway inhibitors in the era of personalised medicine. Gut, 2019, 68(4), 742-758. doi: 10.1136/gutjnl-2018-316822 PMID: 30396902
- Falasca, M.; Hamilton, J.R.; Selvadurai, M.; Sundaram, K.; Adamska, A.; Thompson, P.E.; Class, I.I. Class II phosphoinositide 3-kinases as novel drug targets. J. Med. Chem., 2017, 60(1), 47-65. doi: 10.1021/acs.jmedchem.6b00963 PMID: 27644332
- Gulluni, F.; Martini, M.; De Santis, M.C.; Campa, C.C.; Ghigo, A.; Margaria, J.P.; Ciraolo, E.; Franco, I.; Ala, U.; Annaratone, L.; Disalvatore, D.; Bertalot, G.; viale, G.; Noatynska, A.; Compagno, M.; Sigismund, S.; Montemurro, F.; Thelen, M.; Fan, F.; Meraldi, P.; Marchiò, C.; Pece, S.; Sapino, A.; Chiarle, R.; Di Fiore, P.P.; Hirsch, E. Mitotic spindle assembly and genomic stability in breast cancer require PI3K-C2α scaffolding function. Cancer Cell, 2017, 32(4), 444-459.e7. doi: 10.1016/j.ccell.2017.09.002 PMID: 29017056
- Payne, S.N.; Maher, M.E.; Tran, N.H.; Van De Hey, D.R.; Foley, T.M.; Yueh, A.E.; Leystra, A.A.; Pasch, C.A.; Jeffrey, J.J.; Clipson, L.; Matkowskyj, K.A.; Deming, D.A. PIK3CA mutations can initiate pancreatic tumorigenesis and are targetable with PI3K inhibitors. Oncogenesis, 2015, 4(10), e169-e169. doi: 10.1038/oncsis.2015.28 PMID: 26436951
- Mehra, S.; Deshpande, N.; Nagathihalli, N. Targeting PI3K pathway in pancreatic ductal adenocarcinoma: Rationale and progress. Cancers, 2021, 13(17), 4434. doi: 10.3390/cancers13174434 PMID: 34503244
- Mortazavi, M.; Moosavi, F.; Martini, M.; Giovannetti, E.; Firuzi, O. Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer. Crit. Rev. Oncol. Hematol., 2022, 176, 103749. doi: 10.1016/j.critrevonc.2022.103749 PMID: 35728737
- Wang, Z.; Liu, T.; Xue, W.; Fang, Y.; Chen, X.; Xu, L.; Zhang, L.; Guan, K.; Pan, J.; Zheng, L.; Qin, G.; Wang, T. ARNTL2 promotes pancreatic ductal adenocarcinoma progression through TGF/BETA pathway and is regulated by miR-26a-5p. Cell Death Dis., 2020, 11(8), 692. doi: 10.1038/s41419-020-02839-6 PMID: 32826856
- Wang, S.; Ma, X.; Ying, Y.; Sun, J.; Yang, Z.; Li, J.; Jin, K.; Wang, X.; Xie, B.; Zheng, X.; Liu, B.; Xie, L. Upregulation of ARNTL2 is associated with poor survival and immune infiltration in clear cell renal cell carcinoma. Cancer Cell Int., 2021, 21(1), 341. doi: 10.1186/s12935-021-02046-z PMID: 34217271
- Grapa, C.M.; Mocan, T.; Gonciar, D.; Zdrehus, C.; Mosteanu, O.; Pop, T.; Mocan, L. Epidermal growth factor receptor and its role in pancreatic cancer treatment mediated by nanoparticles. Int. J. Nanomed., 2019, 14, 9693-9706. doi: 10.2147/IJN.S226628 PMID: 31849462
- Chiramel, J.; Backen, A.; Pihlak, R.; Lamarca, A.; Frizziero, M.; Tariq, N.A.; Hubner, R.; Valle, J.; Amir, E.; McNamara, M. Targeting the epidermal growth factor receptor in addition to chemotherapy in patients with advanced pancreatic cancer: A systematic review and meta-analysis. Int. J. Mol. Sci., 2017, 18(5), 909. doi: 10.3390/ijms18050909 PMID: 28445400
- Qing, L.; Qing, W. Development of epidermal growth factor receptor targeted therapy in pancreatic cancer. Minerva Chir., 2018, 73(5), 488-496. doi: 10.23736/S0026-4733.18.07512-0 PMID: 29397631
- Mahajan, U.M.; Li, Q.; Alnatsha, A.; Maas, J.; Orth, M.; Maier, S.H.; Peterhansl, J.; Regel, I.; Sendler, M.; Wagh, P.R.; Mishra, N.; Xue, Y.; Allawadhi, P.; Beyer, G.; Kühn, J.P.; Marshall, T.; Appel, B.; Lämmerhirt, F.; Belka, C.; Müller, S.; Weiss, F.U.; Lauber, K.; Lerch, M.M.; Mayerle, J. Tumor-specific delivery of 5-fluorouracilincorporated epidermal growth factor receptor-targeted aptamers as an efficient treatment in pancreatic ductal adenocarcinoma models. Gastroenterology, 2021, 161(3), 996-1010.e1. doi: 10.1053/j.gastro.2021.05.055 PMID: 34097885
- Oliveira-Cunha, M.; Newman, W.G.; Siriwardena, A.K. Epidermal growth factor receptor in pancreatic cancer. Cancers, 2011, 3(2), 1513-1526. doi: 10.3390/cancers3021513 PMID: 24212772
- Uribe, M.L.; Marrocco, I.; Yarden, Y. EGFR in cancer: Signaling mechanisms, drugs, and acquired resistance. Cancers, 2021, 13(11), 2748. doi: 10.3390/cancers13112748 PMID: 34206026
- Kakarala, K.K.; Jamil, K. Identification of novel allosteric binding sites and multi-targeted allosteric inhibitors of receptor and non-receptor tyrosine kinases using a computational approach. J. Biomol. Struct. Dyn., 2022, 40(15), 6889-6909. doi: 10.1080/07391102.2021.1891140 PMID: 33682622
- Yoshizawa, T.; Uchibori, K.; Araki, M.; Matsumoto, S.; Ma, B.; Kanada, R.; Seto, Y.; Oh-hara, T.; Koike, S.; Ariyasu, R.; Kitazono, S.; Ninomiya, H.; Takeuchi, K.; Yanagitani, N.; Takagi, S.; Kishi, K.; Fujita, N.; Okuno, Y.; Nishio, M.; Katayama, R. Microsecond-timescale MD simulation of EGFR minor mutation predicts the structural flexibility of EGFR kinase core that reflects EGFR inhibitor sensitivity. NPJ Precis. Oncol., 2021, 5(1), 32. doi: 10.1038/s41698-021-00170-7 PMID: 33863983
- Todsaporn, D.; Mahalapbutr, P.; Poo-arporn, R.P.; Choowongkomon, K.; Rungrotmongkol, T. Structural dynamics and kinase inhibitory activity of three generations of tyrosine kinase inhibitors against wild-type, L858R/T790M, and L858R/T790M/C797S forms of EGFR. Comput. Biol. Med., 2022, 147, 105787. doi: 10.1016/j.compbiomed.2022.105787 PMID: 35803080
- Li, D.D.; Wu, T.T.; Yu, P.; Wang, Z.Z.; Xiao, W.; Jiang, Y.; Zhao, L.G. Molecular dynamics analysis of binding sites of epidermal growth factor receptor kinase inhibitors. ACS Omega, 2020, 5(26), 16307-16314. doi: 10.1021/acsomega.0c02183 PMID: 32656454
- Chen, K.E.; Tillu, V.A.; Chandra, M.; Collins, B.M. Molecular basis for membrane recruitment by the PX and C2 domains of class II phosphoinositide 3-kinase-C2α. Structure, 2018, 26(12), 1612-1625.e4. doi: 10.1016/j.str.2018.08.010 PMID: 30293811
- Moberly, J.G.; Bernards, M.T.; Waynant, K.V. Key features and updates for Origin 2018. J. Cheminform., 2018, 10(1), 5. doi: 10.1186/s13321-018-0259-x PMID: 29427195
- Anuar, N.F.S.K.; Wahab, R.A.; Huyop, F.; Amran, S.I.; Hamid, A.A.A.; Halim, K.B.A.; Hood, M.H.M. Molecular docking and molecular dynamics simulations of a mutant Acinetobacter haemolyticus alkaline-stable lipase against tributyrin. J. Biomol. Struct. Dyn., 2021, 39(6), 2079-2091. doi: 10.1080/07391102.2020.1743364 PMID: 32174260
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33. doi: 10.3322/caac.21708 PMID: 35020204
- Reichardt, P.; Montemurro, M. Clinical experience to date with nilotinib in gastrointestinal stromal tumors. Semin. Oncol., 2011, 38(Suppl. 1), S20-S27. doi: 10.1053/j.seminoncol.2011.01.015 PMID: 21419932
- Prerna, K.; Dubey, V.K. Repurposing of FDA-approved drugs as autophagy inhibitors in tumor cells. J. Biomol. Struct. Dyn., 2022, 40(13), 5815-5826. doi: 10.1080/07391102.2021.1873862 PMID: 33467992
- Meng, L.; Zhao, P.; Hu, Z.; Ma, W.; Niu, Y.; Su, J.; Zhang, Y. Nilotinib, a tyrosine kinase inhibitor, suppresses the cell growth and triggers autophagy in papillary thyroid cancer. Anticancer. Agents Med. Chem., 2022, 22(3), 596-602. doi: 10.2174/1871520621666210402110331 PMID: 33797387
- Wang, S.; Xie, Y.; Bao, A.; Li, J.; Ye, T.; Yang, C.; Yu, S. Nilotinib, a Discoidin domain receptor 1 (DDR1) inhibitor, induces apoptosis and inhibits migration in breast cancer. Neoplasma, 2021, 68(5), 972-982. doi: 10.4149/neo_2021_201126N1282 PMID: 34263649
- Weigel, M.T.; Rath, K.; Alkatout, I.; Wenners, A.S.; Schem, C.; Maass, N.; Jonat, W.; Mundhenke, C. Nilotinib in combination with carboplatin and paclitaxel is a candidate for ovarian cancer treatment. Oncology, 2014, 87(4), 232-245. doi: 10.1159/000363656 PMID: 25116401
- Bao, S.; Zheng, H.; Ye, J.; Huang, H.; Zhou, B.; Yao, Q.; Lin, G.; Zhang, H.; Kou, L.; Chen, R. Dual targeting EGFR and STAT3 with erlotinib and alantolactone co-loaded PLGA nanoparticles for pancreatic cancer treatment. Front. Pharmacol., 2021, 12, 625084. doi: 10.3389/fphar.2021.625084 PMID: 33815107
- Kenney, C.; Kunst, T.; Webb, S.; Christina, D., Jr; Arrowood, C.; Steinberg, S.M.; Mettu, N.B.; Kim, E.J.; Rudloff, U. Phase II study of selumetinib, an orally active inhibitor of MEK1 and MEK2 kinases, in KRASG12R-mutant pancreatic ductal adenocarcinoma. Invest. New Drugs, 2021, 39(3), 821-828. doi: 10.1007/s10637-020-01044-8 PMID: 33405090
- Suda, T.; Tsunoda, T.; Uchida, N.; Watanabe, T.; Hasegawa, S.; Satoh, S.; Ohgi, S.; Furukawa, Y.; Nakamura, Y.; Tahara, H. Identification of secernin 1 as a novel immunotherapy target for gastric cancer using the expression profiles of cDNA microarray. Cancer Sci., 2006, 97(5), 411-419. doi: 10.1111/j.1349-7006.2006.00194.x PMID: 16630140
- Miyoshi, N.; Ishii, H.; Mimori, K.; Sekimoto, M.; Doki, Y.; Mori, M. SCRN1 is a novel marker for prognosis in colorectal cancer. J. Surg. Oncol., 2010, 101(2), 156-159. doi: 10.1002/jso.21459 PMID: 20039278
- Geisler, C.; Gaisa, N.T.; Pfister, D.; Fuessel, S.; Kristiansen, G.; Braunschweig, T.; Gostek, S.; Beine, B.; Diehl, H.C.; Jackson, A.M.; Borchers, C.H.; Heidenreich, A.; Meyer, H.E.; Knüchel, R.; Henkel, C. Identification and validation of potential new biomarkers for prostate cancer diagnosis and prognosis using 2D-DIGE and MS. BioMed Res. Int., 2015, 2015, 1-23. doi: 10.1155/2015/454256 PMID: 25667921
- Li, L.; Yang, K.; Ye, F.; Xu, Y.; Cao, L.; Sheng, J. Abnormal expression of TRIAP1 and its role in gestational diabetes mellitus related pancreatic β cells. Exp. Ther. Med., 2021, 21(3), 187. doi: 10.3892/etm.2021.9618 PMID: 33488796
- Qian, W.; Chen, K.; Qin, T.; Xiao, Y.; Li, J.; Yue, Y.; Zhou, C.; Ma, J.; Duan, W.; Lei, J.; Han, L.; Li, L.; Shen, X.; Wu, Z.; Ma, Q.; Wang, Z. The EGFR-HSF1 axis accelerates the tumorigenesis of pancreatic cancer. J. Exp. Clin. Cancer Res., 2021, 40(1), 25. doi: 10.1186/s13046-020-01823-4 PMID: 33422093
- Troiani, T.; Martinelli, E.; Capasso, A.; Morgillo, F.; Orditura, M.; De Vita, F.; Ciardiello, F. Targeting EGFR in pancreatic cancer treatment. Curr. Drug Targets, 2012, 13(6), 802-810. doi: 10.2174/138945012800564158 PMID: 22458527
- Amelia, T.; Kartasasmita, R.E.; Ohwada, T.; Tjahjono, D.H. Structural insight and development of EGFR tyrosine kinase inhibitors. Molecules, 2022, 27(3), 819. doi: 10.3390/molecules27030819 PMID: 35164092
- Margaria, J.P.; Ratto, E.; Gozzelino, L.; Li, H.; Hirsch, E. Class II PI3Ks at the intersection between signal transduction and membrane trafficking. Biomolecules, 2019, 9(3), 104. doi: 10.3390/biom9030104 PMID: 30884740
- Lo, W.T.; Zhang, Y.; Vadas, O.; Roske, Y.; Gulluni, F.; De Santis, M.C.; Zagar, A.V.; Stephanowitz, H.; Hirsch, E.; Liu, F.; Daumke, O.; Kudryashev, M.; Haucke, V. Structural basis of phosphatidylinositol 3-kinase C2α function. Nat. Struct. Mol. Biol., 2022, 29(3), 218-228. doi: 10.1038/s41594-022-00730-w PMID: 35256802
- Awasthi, N.; Kronenberger, D.; Stefaniak, A.; Hassan, M.S.; von Holzen, U.; Schwarz, M.A.; Schwarz, R.E. Dual inhibition of the PI3K and MAPK pathways enhances nab-paclitaxel/gemcitabine chemotherapy response in preclinical models of pancreatic cancer. Cancer Lett., 2019, 459, 41-49. doi: 10.1016/j.canlet.2019.05.037 PMID: 31153980
- Ciuffreda, L.; Del Curatolo, A.; Falcone, I.; Conciatori, F.; Bazzichetto, C.; Cognetti, F.; Corbo, V.; Scarpa, A.; Milella, M. Lack of growth inhibitory synergism with combined MAPK/PI3K inhibition in preclinical models of pancreatic cancer. Ann. Oncol., 2017, 28(11), 2896-2898. doi: 10.1093/annonc/mdx335 PMID: 28666315
- Lu, M.; Huang, L.; Tang, Y.; Sun, T.; Li, J.; Xiao, S. ARNTL2 knockdown suppressed the invasion and migration of colon carcinoma: Decreased SMOC2-EMT expression through inactivation of PI3K/AKT pathway. Am. J. Transl. Res., 2020, 12(4), 1293-1308.
- Cash, E.; Sephton, S.; Woolley, C.; Elbehi, A.M.; R i, A.; Ekine-Afolabi, B.; Kok, V.C. The role of the circadian clock in cancer hallmark acquisition and immune-based cancer therapeutics. J. Exp. Clin. Cancer Res., 2021, 40(1), 119. doi: 10.1186/s13046-021-01919-5 PMID: 33794967
Supplementary files
