Rational Design of Dual Inhibitors for Alzheimer's Disease: Insights from Computational Screening of BACE1 and GSK-3β
- Authors: Sai Varshini M.1, Aishwarya Reddy R.2, Thaggikuppe Krishnamurthy P.3, Selvaraj D.4
-
Affiliations:
- Department of Pharmacology,, JSS Academy of Higher Education and Research
- Department of Pharmaceutics, JSS College of Pharmacy,, JSS Academy of Higher Education and Research,
- Department of Pharmacology, JSS College of Pharmacy,, JSS Academy of Higher Education and Research,
- Department of Pharmacology, JSS College of Pharmacy,, JSS Academy of Higher Education and Research
- Issue: Vol 20, No 6 (2024)
- Pages: 998-1012
- Section: Chemistry
- URL: https://ruspoj.com/1573-4099/article/view/644483
- DOI: https://doi.org/10.2174/0115734099270256231018072007
- ID: 644483
Cite item
Full Text
Abstract
Background:Alzheimer's disease (AD) is one of the most concerned neurodegenerative disorders across the world characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs), leading to cognitive decline and memory loss. Targeting key pathways involved in AD like Aβ and NFT pathways, are crucial for the development of effective therapeutic strategies. In this study, we aimed to identify and establish promising dual inhibitors targeting BACE1 and GSK-3β, two proteins implicated in Aβ and NFT formation respectively.
Methods:We have used molecular docking, ADME property analysis, and MMGBSA calculations for the identification of hit molecules and further evaluation of binding affinity, drug-like properties, and stability against BACE1 and GSK-3β.
Results:Our results demonstrated strong binding affinities of ZINC000034853956 towards the active sites of both proteins, with favorable interactions involving key residues crucial for inhibitory activity. Additionally, ZINC000034853956 exhibited favorable drug-like properties. MD simulations revealed the stable binding of ZINC000034853956 to both BACE1 and GSK-3β over a 50 ns period, with consistent ligand-protein interactions, such as hydrogen bonding and hydrophobic contacts. These findings highlight the potential of ZINC000034853956 as a promising candidate for AD treatment, acting as a dual inhibitor targeting both BACE1 and GSK-3β. Overall, our study provides valuable insights into the potential of ZINC000034853956 as a dual inhibitor for AD. The strong binding affinity, favorable drug-like properties, and stability observed in MD simulations support its suitability for further optimization and preclinical studies.
Conclusion:Further investigations are warranted to elucidate the precise molecular mechanisms and therapeutic benefits of ZINC000034853956. Our findings offer hope for the development of novel therapeutic interventions targeting crucial pathways involved in AD neurodegeneration.
Keywords
About the authors
Magham Sai Varshini
Department of Pharmacology,, JSS Academy of Higher Education and Research
Email: info@benthamscience.net
Ramakkamma Aishwarya Reddy
Department of Pharmaceutics, JSS College of Pharmacy,, JSS Academy of Higher Education and Research,
Email: info@benthamscience.net
Praveen Thaggikuppe Krishnamurthy
Department of Pharmacology, JSS College of Pharmacy,, JSS Academy of Higher Education and Research,
Author for correspondence.
Email: info@benthamscience.net
Divakar Selvaraj
Department of Pharmacology, JSS College of Pharmacy,, JSS Academy of Higher Education and Research
Email: info@benthamscience.net
References
- Javaid, S.F.; Giebel, C.; Khan, M.A.B.; Hashim, M.J. Epidemiology of Alzheimers disease and other dementias: Rising global burden and forecasted trends. F1000 Res., 2021, 10, 425. doi: 10.12688/f1000research.50786.1
- Alzheimers disease facts and figures. Alzheimers Dement., 2022, 18(4), 700-789. doi: 10.1002/alz.12638 PMID: 35289055
- Dementia. Available from: https://www.who.int/news-room/fact-sheets/detail/dementia (cited 2023 Sep 4).
- Avila, J.; Hernández, F. GSK-3 inhibitors for Alzheimers disease. Expert Rev. Neurother., 2007, 7(11), 1527-1533. doi: 10.1586/14737175.7.11.1527 PMID: 17997701
- Tahami Monfared, A.A.; Byrnes, M.J.; White, L.A.; Zhang, Q. The humanistic and economic burden of alzheimers Disease. Neurol. Ther., 2022, 11(2), 525-551. doi: 10.1007/s40120-022-00335-x PMID: 35192176
- Zhu, C.W.; Sano, M. Economic considerations in the management of Alzheimers disease. Clin. Interv. Aging, 2006, 1(2), 143-154. doi: 10.2147/ciia.2006.1.2.143 PMID: 18044111
- Rampa, A.; Gobbi, S.; Concetta Di Martino, R.M.; Belluti, F.; Bisi, A. Dual BACE-1/GSK-3β inhibitors to combat alzheimers disease: A focused review. Curr. Top. Med. Chem., 2018, 17(31), 3361-3369. doi: 10.2174/1568026618666180112161406
- Goedert, M.; Spillantini, M.G. A century of Alzheimers disease. Science, 2006, 314(5800), 777-781. doi: 10.1126/science.1132814 PMID: 17082447
- Hernández, F.; Gómez de Barreda, E.; Fuster-Matanzo, A.; Lucas, J.J.; Avila, J. GSK3: A possible link between beta amyloid peptide and tau protein. Exp. Neurol., 2010, 223(2), 322-325. doi: 10.1016/j.expneurol.2009.09.011 PMID: 19782073
- Bloom, G.S. Amyloid-β and Tau. JAMA Neurol., 2014, 71(4), 505-508. doi: 10.1001/jamaneurol.2013.5847 PMID: 24493463
- Nisbet, R.M.; Götz, J. Amyloid-β and Tau in alzheimers disease: Novel pathomechanisms and non-pharmacological treatment strategies. J. Alzheimers Dis., 2018, 64(s1), S517-S527. doi: 10.3233/JAD-179907 PMID: 29562514
- Busche, M.A.; Hyman, B.T. Synergy between amyloid-β and tau in Alzheimers disease. Nat. Neurosci., 2020, 23(10), 1183-1193. doi: 10.1038/s41593-020-0687-6 PMID: 32778792
- Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem., 2008, 51(3), 347-372. doi: 10.1021/jm7009364 PMID: 18181565
- Csermely, P.; Agoston, V.; Pongor, S. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol. Sci., 2005, 26(4), 178-182. doi: 10.1016/j.tips.2005.02.007 PMID: 15808341
- Hughes, R.E.; Nikolic, K.; Ramsay, R.R. One for all? hitting multiple alzheimers disease targets with one drug. Front. Neurosci., 2016, 10, 177. doi: 10.3389/fnins.2016.00177 PMID: 27199640
- León, R.; Garcia, A.G.; Marco-Contelles, J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimers disease. Med. Res. Rev., 2013, 33(1), 139-189. doi: 10.1002/med.20248 PMID: 21793014
- Teli, P.; Sahiba, N.; Soni, J.; Sethiya, A.; Agarwal, D.K.; Agarwal, S. Exploration of potent multi-target-directed-ligands as anti-alzheimers disease agents: A moiety based review. Mini Rev. Med. Chem., 2021, 21(20), 3219-3248. doi: 10.2174/1389557521666210304111754 PMID: 33663363
- Das, S.; Basu, S. Multi-targeting strategies for alzheimers disease therapeutics: Pros and Cons. Curr. Top. Med. Chem., 2017, 17(27), 3017-3061. PMID: 28685694
- Coimbra, J.R.M.; Marques, D.F.F.; Baptista, S.J.; Pereira, C.M.F.; Moreira, P.I.; Dinis, T.C.P.; Santos, A.E.; Salvador, J.A.R. Highlights in BACE1 Inhibitors for Alzheimers Disease Treatment. Front Chem., 2018, 6, 178. doi: 10.3389/fchem.2018.00178 PMID: 29881722
- Das, B.; Yan, R. A close look at BACE1 inhibitors for alzheimers disease treatment. CNS Drugs, 2019, 33(3), 251-263. doi: 10.1007/s40263-019-00613-7 PMID: 30830576
- Ghosh, A.K.; Osswald, H.L. BACE1 (β-secretase) inhibitors for the treatment of Alzheimers disease. Chem. Soc. Rev., 2014, 43(19), 6765-6813. doi: 10.1039/C3CS60460H PMID: 24691405
- Guo, T.; Hobbs, D. Development of BACE1 inhibitors for Alzheimers disease. Curr. Med. Chem., 2006, 13(15), 1811-1829. doi: 10.2174/092986706777452489 PMID: 16787223
- Hu, X.; Hicks, C.W.; He, W.; Wong, P.; Macklin, W.B.; Trapp, B.D.; Yan, R. Bace1 modulates myelination in the central and peripheral nervous system. Nat. Neurosci., 2006, 9(12), 1520-1525. doi: 10.1038/nn1797 PMID: 17099708
- Leroy, K.; Yilmaz, Z.; Brion, J.P. Increased level of active GSK-3? in Alzheimers disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol. Appl. Neurobiol., 2007, 33(1), 43-55. doi: 10.1111/j.1365-2990.2006.00795.x PMID: 17239007
- Eldar-Finkelman, H.; Martinez, A. GSK-3 inhibitors: Preclinical and clinical focus on CNS. Front. Mol. Neurosci., 2011, 4, 32. doi: 10.3389/fnmol.2011.00032 PMID: 22065134
- Eldar-Finkelman, H.; Licht-Murava, A.; Pietrokovski, S.; Eisenstein, M. Substrate competitive GSK-3 inhibitors: Strategy and implications. Biochim. Biophys. Acta. Proteins Proteomics, 2010, 1804(3), 598-603. doi: 10.1016/j.bbapap.2009.09.010 PMID: 19770076
- Llorens-Martín, M.; Jurado, J.; Hernández, F.; Avila, J. GSK-3β, a pivotal kinase in Alzheimer disease. Front. Mol. Neurosci., 2014, 7, 46. doi: 10.3389/fnmol.2014.00046
- Doble, B.W.; Woodgett, J.R. GSK-3: Tricks of the trade for a multi-tasking kinase. J. Cell Sci., 2003, 116(7), 1175-1186. doi: 10.1242/jcs.00384 PMID: 12615961
- Kypta, R.M. GSK-3 inhibitors and their potential in the treatment of Alzheimers disease. Expert Opin. Ther. Pat., 2005, 15(10), 1315-1331. doi: 10.1517/13543776.15.10.1315
- Lei, P.; Ayton, S.; Bush, A.I.; Adlard, P.A. GSK-3 in neurodegenerative diseases. Int. J. Alzheimers Dis., 2011, 2011, 1-9. doi: 10.4061/2011/189246 PMID: 21629738
- Paudel, P.; Seong, S.H.; Zhou, Y.; Ha, M.T.; Min, B.S.; Jung, H.A.; Choi, J.S. Arylbenzofurans from the Root Bark of Morus alba as triple inhibitors of cholinesterase, β-site amyloid precursor protein cleaving enzyme 1, and glycogen synthase kinase-3β: Relevance to alzheimers disease. ACS Omega, 2019, 4(4), 6283-6294. doi: 10.1021/acsomega.9b00198 PMID: 31459768
- Jiang, X.; Lu, H.; Li, J.; Liu, W.; Wu, Q.; Xu, Z.; Qiao, Q.; Zhang, H.; Gao, H.; Zhao, Q. A natural BACE1 and GSK3β dual inhibitor Notopterol effectively ameliorates the cognitive deficits in APP/PS1 Alzheimers mice by attenuating amyloid‐β and tau pathology. Clin. Transl. Med., 2020, 10(3), e50. doi: 10.1002/ctm2.50 PMID: 32652879
- Di Martino, R.M.C.; De Simone, A.; Andrisano, V.; Bisignano, P.; Bisi, A.; Gobbi, S.; Rampa, A.; Fato, R.; Bergamini, C.; Perez, D.I.; Martinez, A.; Bottegoni, G.; Cavalli, A.; Belluti, F. Versatility of the curcumin scaffold: Discovery of potent and balanced dual BACE-1 and GSK-3β inhibitors. J. Med. Chem., 2016, 59(2), 531-544. doi: 10.1021/acs.jmedchem.5b00894 PMID: 26696252
- Prati, F.; De Simone, A.; Bisignano, P.; Armirotti, A.; Summa, M.; Pizzirani, D.; Scarpelli, R.; Perez, D.I.; Andrisano, V.; Perez-Castillo, A.; Monti, B.; Massenzio, F.; Polito, L.; Racchi, M.; Favia, A.D.; Bottegoni, G.; Martinez, A.; Bolognesi, M.L.; Cavalli, A. Multitarget drug discovery for Alzheimers disease: Triazinones as BACE-1 and GSK-3β inhibitors. Angew. Chem. Int. Ed., 2015, 54(5), 1578-1582. doi: 10.1002/anie.201410456 PMID: 25504761
- Prati, F.; De Simone, A.; Armirotti, A.; Summa, M.; Pizzirani, D.; Scarpelli, R.; Bertozzi, S.M.; Perez, D.I.; Andrisano, V.; Perez-Castillo, A.; Monti, B.; Massenzio, F.; Polito, L.; Racchi, M.; Sabatino, P.; Bottegoni, G.; Martinez, A.; Cavalli, A.; Bolognesi, M.L. 3,4-Dihydro-1,3,5-triazin-2(1 H)-ones as the First Dual BACE-1/GSK-3β Fragment Hits against Alzheimers Disease. ACS Chem. Neurosci., 2015, 6(10), 1665-1682. doi: 10.1021/acschemneuro.5b00121 PMID: 26171616
- Cole, S.; Vassar, R. BACE1 structure and function in health and Alzheimers disease. Curr. Alzheimer Res., 2008, 5(2), 100-120. doi: 10.2174/156720508783954758 PMID: 18393796
- Vassar, R. The β-secretase, BACE: A prime drug target for Alzheimers disease. J. Mol. Neurosci., 2001, 17(2), 157-170. doi: 10.1385/JMN:17:2:157 PMID: 11816789
- Huang, W.H.; Sheng, R.; Hu, Y.Z. Progress in the development of nonpeptidomimetic BACE 1 inhibitors for Alzheimers disease. Curr. Med. Chem., 2009, 16(14), 1806-1820. doi: 10.2174/092986709788186174 PMID: 19442147
- Kumar, A.; Srivastava, G.; Negi, A.S.; Sharma, A. Docking, molecular dynamics, binding energy-MM-PBSA studies of naphthofuran derivatives to identify potential dual inhibitors against BACE-1 and GSK-3β. J. Biomol. Struct. Dyn., 2019, 37(2), 275-290. doi: 10.1080/07391102.2018.1426043 PMID: 29310523
- Machauer, R.; Lueoend, R.; Hurth, K.; Veenstra, S.J.; Rueeger, H.; Voegtle, M.; Tintelnot-Blomley, M.; Rondeau, J.M.; Jacobson, L.H.; Laue, G.; Beltz, K.; Neumann, U. Discovery of Umibecestat (CNP520): A potent, selective, and efficacious β-secretase (BACE1) inhibitor for the prevention of alzheimers disease. J. Med. Chem., 2021, 64(20), 15262-15279. doi: 10.1021/acs.jmedchem.1c01300 PMID: 34648711
- Hong, L.; Tang, J. Flap position of free memapsin 2 (β-secretase), a model for flap opening in aspartic protease catalysis. Biochemistry, 2004, 43(16), 4689-4695. doi: 10.1021/bi0498252 PMID: 15096037
- Barman, A.; Schürer, S.; Prabhakar, R. Computational modeling of substrate specificity and catalysis of the β-secretase (BACE1) enzyme. Biochemistry, 2011, 50(20), 4337-4349. doi: 10.1021/bi200081h PMID: 21500768
- Fujimoto, K.; Matsuoka, E.; Asada, N.; Tadano, G.; Yamamoto, T.; Nakahara, K.; Fuchino, K.; Ito, H.; Kanegawa, N.; Moechars, D.; Gijsen, H.J.M.; Kusakabe, K. Structure-based design of selective β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors: Targeting the flap to gain selectivity over BACE2. J. Med. Chem., 2019, 62(10), 5080-5095. doi: 10.1021/acs.jmedchem.9b00309 PMID: 31021626
- Yuan, J.; Venkatraman, S.; Zheng, Y.; McKeever, B.M.; Dillard, L.W.; Singh, S.B. Structure-based design of β-site APP cleaving enzyme 1 (BACE1) inhibitors for the treatment of Alzheimers disease. J. Med. Chem., 2013, 56(11), 4156-4180. doi: 10.1021/jm301659n PMID: 23509904
- Buch, I.; Fishelovitch, D.; London, N.; Raveh, B.; Wolfson, H.J.; Nussinov, R. Allosteric regulation of glycogen synthase kinase 3β: A theoretical study. Biochemistry, 2010, 49(51), 10890-10901. doi: 10.1021/bi100822q PMID: 21105670
- Elangovan, N.D.; Dhanabalan, A.K.; Gunasekaran, K.; Kandimalla, R.; Sankarganesh, D. Screening of potential drug for Alzheimers disease: A computational study with GSK-3 β inhibition through virtual screening, docking, and molecular dynamics simulation. J. Biomol. Struct. Dyn., 2021, 39(18), 7065-7079. doi: 10.1080/07391102.2020.1805362 PMID: 32779973
- He, Q.; Han, C.; Li, G.; Guo, H.; Wang, Y.; Hu, Y.; Lin, Z.; Wang, Y. In silico design novel (5-imidazol-2-yl-4-phenylpyrimidin-2-yl)2-(2-pyridylamino)ethylamine derivatives as inhibitors for glycogen synthase kinase 3 based on 3D-QSAR, molecular docking and molecular dynamics simulation. Comput. Biol. Chem., 2020, 88, 107328. doi: 10.1016/j.compbiolchem.2020.107328 PMID: 32688011
- Nassar, H.; Sippl, W.; Dahab, R.A.; Taha, M. Molecular docking, molecular dynamics simulations and in vitro screening reveal cefixime and ceftriaxone as GSK3β covalent inhibitors. RSC Adv., 2023, 13(17), 11278-11290. doi: 10.1039/D3RA01145C PMID: 37057264
- Ghosh, S.; Keretsu, S.; Cho, S.J. 3D-QSAR, docking and molecular dynamics simulation study of C-Glycosylflavones as GSK-3β inhibitors. J. Chosun. Nat. Sci., 2020, 13(4), 170-180.
- Kumar, A.; Srivastava, G.; Srivastava, S.; Verma, S.; Negi, A.S.; Sharma, A. Investigation of naphthofuran moiety as potential dual inhibitor against BACE-1 and GSK-3β: Molecular dynamics simulations, binding energy, and network analysis to identify first-in-class dual inhibitors against Alzheimers disease. J. Mol. Model., 2017, 23(8), 239. doi: 10.1007/s00894-017-3396-7 PMID: 28741112
- Kumar, A.; Srivastava, G.; Sharma, A. In silico interaction studies of first dual inhibitor against BACE-1/GSK-3β. In: 2016 International Conference on Bioinformatics and Systems Biology (BSB)., 2016, pp. 1-4. doi: 10.1109/BSB.2016.7552161
- ZINC. Available from: https://zinc15.docking.org/substances/subsets/ (cited 2023 Sep 3).
- Chapter 18. Discovery of Multi-Target Agents for Neurological Diseases via Ligand Design ⋅ Request PDF. Available from: https://www.researchgate.net/publication/346791653_Chapter_18_Discovery_of_Multi-Target_Agents_for_Neurological_Diseases_via_Ligand_Design (cited 2023 Sep 3).
- Domínguez, J.L.; Fernández-Nieto, F.; Castro, M.; Catto, M.; Paleo, M.R.; Porto, S.; Sardina, F.J.; Brea, J.M.; Carotti, A.; Villaverde, M.C.; Sussman, F. Computer-aided structure-based design of multitarget leads for Alzheimers disease. J. Chem. Inf. Model., 2015, 55(1), 135-148. doi: 10.1021/ci500555g PMID: 25483751
- Raj, U.; Kumar, H.; Gupta, S.; Varadwaj, P.K. Exploring dual inhibitors for STAT1 and STAT5 receptors utilizing virtual screening and dynamics simulation validation. J. Biomol. Struct. Dyn., 2016, 34(10), 2115-2129. doi: 10.1080/07391102.2015.1108870 PMID: 26471877
- Ramsay, R.R.; Majekova, M.; Medina, M.; Valoti, M. Key targets for multi-target ligands designed to combat neurodegeneration. Front. Neurosci., 2016, 10, 375. doi: 10.3389/fnins.2016.00375 PMID: 27597816
- Pirolli, D.; Righino, B.; Camponeschi, C.; Ria, F.; Di Sante, G.; De Rosa, M.C. Virtual screening and molecular dynamics simulations provide insight into repurposing drugs against SARS-CoV-2 variants Spike protein/ACE2 interface. Sci. Rep., 2023, 13(1), 1494. doi: 10.1038/s41598-023-28716-8 PMID: 36707679
- Chander, S.; Pandey, R.K.; Penta, A.; Choudhary, B.S.; Sharma, M.; Malik, R.; Prajapati, V.K.; Murugesan, S. Molecular docking and molecular dynamics simulation based approach to explore the dual inhibitor against HIV-1 reverse transcriptase and integrase. Comb. Chem. High Throughput Screen., 2017, 20(8), 734-746. PMID: 28641512
- Manandhar, S.; Pai, K.S.R.; Krishnamurthy, P.T.; Kiran, A.V.V.V.R.; Kumari, G.K. Identification of novel TMPRSS2 inhibitors against SARS-CoV-2 infection: A structure-based virtual screening and molecular dynamics study. Struct. Chem., 2022, 33(5), 1529-1541. doi: 10.1007/s11224-022-01921-3 PMID: 35345416
- Baby, K.; Maity, S.; Mehta, C.H.; Suresh, A.; Nayak, U.Y.; Nayak, Y. SARS-CoV-2 entry inhibitors by dual targeting TMPRSS2 and ACE2: An in silico drug repurposing study. Eur. J. Pharmacol., 2021, 896, 173922. doi: 10.1016/j.ejphar.2021.173922 PMID: 33539819
- Ivanova, L.; Tammiku-Taul, J.; García-Sosa, A.T.; Sidorova, Y.; Saarma, M.; Karelson, M. Molecular dynamics simulations of the interactions between glial cell line-derived neurotrophic factor family receptor GFRα1 and small-molecule ligands. ACS Omega, 2018, 3(9), 11407-11414. doi: 10.1021/acsomega.8b01524 PMID: 30320260
- Docking of FDA Approved Drugs Targeting NSP-16. Docking of FDA Approved Drugs Targeting NSP-16, N-Protein and Main Protease of SARS-CoV-2 as Dual Inhibitors. Biointerface Res. Appl. Chem., 2020, 11(3), 9848-9861. doi: 10.33263/BRIAC113.98489861
- P, G.; M K, K. Docking studies and molecular dynamics simulation of triazole benzene sulfonamide derivatives with human carbonic anhydrase IX inhibition activity. RSC Adv., 2021, 11(60), 38079-38093. doi: 10.1039/D1RA07377J PMID: 35498092
- Nawaz, M.Z.; Attique, S.A.; Ain, Q.; Alghamdi, H.A.; Bilal, M.; Yan, W.; Zhu, D. Discovery and characterization of dual inhibitors of human Vanin-1 and Vanin-2 enzymes through molecular docking and dynamic simulation-based approach. Int. J. Biol. Macromol., 2022, 213, 1088-1097. doi: 10.1016/j.ijbiomac.2022.06.014 PMID: 35697166
- Krishna Swaroop, A.; Krishnan Namboori, P.K.; Esakkimuthukumar, M.; Praveen, T.K.; Nagarjuna, P.; Patnaik, S.K.; Selvaraj, J. Leveraging decagonal in-silico strategies for uncovering IL-6 inhibitors with precision. Comput. Biol. Med., 2023, 163, 107231. doi: 10.1016/j.compbiomed.2023.107231 PMID: 37421735
Supplementary files
