Computer-aided Design of Wide-spectrum Coronavirus Helicase NSP13 Cage Inhibitors: A Molecular Modelling Approach


Cite item

Full Text

Abstract

Background:The coronavirus helicase NSP13 plays a critical role in its life cycle. The found NSP13 inhibitors have been tested only in vitro but they definitely have the potential to become antiviral drugs. Thus, the search for NSP13 inhibitors is of great importance.

Objective:The goal of the present work was to develop a general approach to the design of ligands of coronaviral NSP13 helicase and to propose on its basis potential inhibitors.

Methods:The structure of the NSP13 protein was refined by molecular dynamics and the cavity, responsible for RNA binding, was chosen as the inhibitor binding site. The potential inhibitor structures were identified by molecular docking and their binding was verified by molecular dynamics simulation.

Results:A number of potential NSP13 inhibitors were identified and the binding modes and probable mechanism of action of potential inhibitors was clarified.

Conclusion:Using the molecular dynamics and molecular docking techniques, we have refined the structure of the coronavirus NSP13 helicase, a number of potential inhibitors, containing cage fragment were proposed and their probable mechanism of action was clarified. The proposed approach is also suitable for the design of ligands interacting with other viral helicases.

About the authors

Vadim Shiryaev

organic chemistry, Samara State Technical University

Author for correspondence.
Email: info@benthamscience.net

Yuri Klimochkin

organic chemistry, Samara State Technical University

Email: info@benthamscience.net

References

  1. Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150. doi: 10.1038/d41573-020-00016-0 PMID: 32127666
  2. Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412. doi: 10.1126/science.abb3405 PMID: 32198291
  3. Osipiuk, J.; Azizi, S.A.; Dvorkin, S.; Endres, M.; Jedrzejczak, R.; Jones, K.A.; Kang, S.; Kathayat, R.S.; Kim, Y.; Lisnyak, V.G.; Maki, S.L.; Nicolaescu, V.; Taylor, C.A.; Tesar, C.; Zhang, Y.A.; Zhou, Z.; Randall, G.; Michalska, K.; Snyder, S.A.; Dickinson, B.C.; Joachimiak, A. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat. Commun., 2021, 12(1), 743. doi: 10.1038/s41467-021-21060-3 PMID: 33531496
  4. Alam, I.; Kamau, A.A.; Kulmanov, M.; Jaremko, Ł.; Arold, S.T.; Pain, A.; Gojobori, T.; Duarte, C.M. Functional pangenome analysis shows key features of E protein are preserved in SARS and SARS-CoV-2. Front. Cell. Infect. Microbiol., 2020, 10, 405. doi: 10.3389/fcimb.2020.00405 PMID: 32850499
  5. Nandi, S.; Roy, H.; Gummadi, A.; Saxena, A.K. Exploring spike protein as potential target of novel coronavirus and to inhibit the viability utilizing natural agents. Curr. Drug Targets, 2021, 22(17), 2006-2020. doi: 10.2174/1389450122666210309105820 PMID: 33687893
  6. Shamsi, A.; Mohammad, T.; Anwar, S.; Amani, S.; Khan, M.S.; Husain, F.M.; Rehman, M.T.; Islam, A.; Hassan, M.I. Potential drug targets of SARS-CoV-2: From genomics to therapeutics. Int. J. Biol. Macromol., 2021, 177, 1-9. doi: 10.1016/j.ijbiomac.2021.02.071 PMID: 33577820
  7. Wondmkun, Y.T.; Mohammed, O.A. A review on novel drug targets and future directions for COVID-19 treatment. Biologics, 2020, 14, 77-82. doi: 10.2147/BTT.S266487 PMID: 32921981
  8. Jia, Z.; Yan, L.; Ren, Z.; Wu, L.; Wang, J.; Guo, J.; Zheng, L.; Ming, Z.; Zhang, L.; Lou, Z.; Rao, Z. Delicate structural coordination of the severe acute respiratory syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Res., 2019, 47(12), 6538-6550. doi: 10.1093/nar/gkz409 PMID: 31131400
  9. Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271. doi: 10.1038/s41422-020-0282-0 PMID: 32020029
  10. Kwong, A.D.; Rao, B.G.; Jeang, K.T. Viral and cellular RNA helicases as antiviral targets. Nat. Rev. Drug Discov., 2005, 4(10), 845-853. doi: 10.1038/nrd1853 PMID: 16184083
  11. Frick, D.; Lam, A. Understanding helicases as a means of virus control. Curr. Pharm. Des., 2006, 12(11), 1315-1338. doi: 10.2174/138161206776361147 PMID: 16611118
  12. Shiraki, K.; Yasumoto, S.; Toyama, N.; Fukuda, H. Amenamevir, a helicase-primase inhibitor, for the optimal treatment of herpes zoster. Viruses, 2021, 13(8), 1547. doi: 10.3390/v13081547 PMID: 34452412
  13. Lee, S.; Yoon, K.D.; Lee, M.; Cho, Y.; Choi, G.; Jang, H.; Kim, B.; Jung, D.H.; Oh, J.G.; Kim, G.W.; Oh, J.W.; Jeong, Y.J.; Kwon, H.J.; Bae, S.K.; Min, D.H.; Windisch, M.P.; Heo, T.H.; Lee, C. Identification of a resveratrol tetramer as a potent inhibitor of hepatitis C virus helicase. Br. J. Pharmacol., 2016, 173(1), 191-211. doi: 10.1111/bph.13358 PMID: 26445091
  14. Lee, S.; Mailar, K.; Kim, M.I.; Park, M.; Kim, J.; Min, D.H.; Heo, T.H.; Bae, S.K.; Choi, W.; Lee, C. Plant-derived purification, chemical synthesis, and in vitro in vivo evaluation of a resveratrol dimer, viniferin, as an HCV replication inhibitor. Viruses, 2019, 11(10), 890. doi: 10.3390/v11100890 PMID: 31547617
  15. Bassetto, M.; Leyssen, P.; Neyts, J.; Yerukhimovich, M.M.; Frick, D.N.; Brancale, A. Computer-aided identification, synthesis and evaluation of substituted thienopyrimidines as novel inhibitors of HCV replication. Eur. J. Med. Chem., 2016, 123, 31-47. doi: 10.1016/j.ejmech.2016.07.035 PMID: 27474921
  16. Mayank; Kumar, D.; Kaur, N.; Giri, R.; Singh, N. A biscoumarin scaffold as an efficient anti-Zika virus lead with NS3-helicase inhibitory potential: In vitro and in silico investigations. New J. Chem., 2020, 44(5), 1872-1880. doi: 10.1039/C9NJ05225A
  17. Bonafoux, D.; Nanthakumar, S.; Bandarage, U.K.; Memmott, C.; Lowe, D.; Aronov, A.M.; Bhisetti, G.R.; Bonanno, K.C.; Coll, J.; Leeman, J.; Lepre, C.A.; Lu, F.; Perola, E.; Rijnbrand, R.; Taylor, W.P.; Wilson, D.; Zhou, Y.; Zwahlen, J.; ter Haar, E. Fragment-based discovery of dual JC virus and BK virus helicase inhibitors. J. Med. Chem., 2016, 59(15), 7138-7151. doi: 10.1021/acs.jmedchem.6b00486 PMID: 27385654
  18. Habtemariam, S.; Nabavi, S.F.; Banach, M.; Berindan-Neagoe, I.; Sarkar, K.; Sil, P.C.; Nabavi, S.M. Should we try SARS-CoV-2 helicase inhibitors for COVID-19 therapy? Arch. Med. Res., 2020, 51(7), 733-735. doi: 10.1016/j.arcmed.2020.05.024 PMID: 32536457
  19. Kao, R.Y.; Tsui, W.H.W.; Lee, T.S.W.; Tanner, J.A.; Watt, R.M.; Huang, J.D.; Hu, L.; Chen, G.; Chen, Z.; Zhang, L.; He, T.; Chan, K.H.; Tse, H.; To, A.P.C.; Ng, L.W.Y.; Wong, B.C.W.; Tsoi, H.W.; Yang, D.; Ho, D.D.; Yuen, K.Y. Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics. Chem. Biol., 2004, 11(9), 1293-1299. doi: 10.1016/j.chembiol.2004.07.013 PMID: 15380189
  20. Yang, N.; Tanner, J.A.; Wang, Z.; Huang, J.D.; Zheng, B.J.; Zhu, N.; Sun, H. Inhibition of SARS coronavirus helicase by bismuth complexes. Chem. Commun., 2007, 42(42), 4413-4415. doi: 10.1039/b709515e PMID: 17957304
  21. Sarafanios, S.G.; Adedeji, A.O. WO Patent Appl. 2013 188887 A1, 2013.
  22. Lee, C.; Lee, J.M.; Lee, N.R.; Kim, D.E.; Jeong, Y.J.; Chong, Y. Investigation of the pharmacophore space of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) NTPase/helicase by dihydroxychromone derivatives. Bioorg. Med. Chem. Lett., 2009, 19(16), 4538-4541. doi: 10.1016/j.bmcl.2009.07.009 PMID: 19625187
  23. Kim, M.K.; Yu, M.S.; Park, H.R.; Kim, K.B.; Lee, C.; Cho, S.Y.; Kang, J.; Yoon, H.; Kim, D.E.; Choo, H.; Jeong, Y.J.; Chong, Y. 2,6-Bis-arylmethyloxy-5-hydroxychromones with antiviral activity against both hepatitis C virus (HCV) and SARS-associated coronavirus (SCV). Eur. J. Med. Chem., 2011, 46(11), 5698-5704. doi: 10.1016/j.ejmech.2011.09.005 PMID: 21925774
  24. Yoon, H.J.; Kim, M.K.; Mok, H.J.; Chong, Y.H. Selective Anti-HCV activity of 6,7-Bis-O-Arylmethyl-5,6,7-Trihydroxychromone derivatives. Bull. Korean Chem. Soc., 2012, 33(8), 2803-2805. doi: 10.5012/bkcs.2012.33.8.2803
  25. Lee, C.; Lee, J.M.; Lee, N.R.; Jin, B.S.; Jang, K.J.; Kim, D.E.; Jeong, Y.J.; Chong, Y. Aryl diketoacids (ADK) selectively inhibit duplex DNA-unwinding activity of SARS coronavirus NTPase/helicase. Bioorg. Med. Chem. Lett., 2009, 19(6), 1636-1638. doi: 10.1016/j.bmcl.2009.02.010 PMID: 19233643
  26. Kesel, A. The bananins: New anticorona-RNA-viral agents with unique structural signature. Antiinfect. Agents Med. Chem., 2006, 5(2), 161-174. doi: 10.2174/187152106776359039
  27. Tanner, J.A.; Zheng, B.J.; Zhou, J.; Watt, R.M.; Jiang, J.Q.; Wong, K.L.; Lin, Y.P.; Lu, L.Y.; He, M.L.; Kung, H.F.; Kesel, A.J.; Huang, J.D. The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus. Chem. Biol., 2005, 12(3), 303-311. doi: 10.1016/j.chembiol.2005.01.006 PMID: 15797214
  28. Mohammad, T.S.H.; Gupta, Y.; Reidl, C.T.; Nicolaescu, V.; Gula, H.; Durvasula, R.; Kempaiah, P.; Becker, D.P. In silicobinding of 2-aminocyclobutanones to SARS-CoV-2 Nsp13 helicase and demonstration of antiviral activity. Int. J. Mol. Sci., 2023, 24(6), 5120. doi: 10.3390/ijms24065120 PMID: 36982188
  29. Jo, S.; Kim, T.; Iyer, V.G. Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem., 2008, 29(11), 1859-1865. doi: 10.1002/jcc.20945 PMID: 18351591
  30. Brooks, B.R.; Brooks, C.L., III; Mackerell, A.D., Jr; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A.R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M. Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R.W.; Post, C.B.; Pu, J.Z.; Schaefer, M.; Tidor, B.; Venable, R.M.; Woodcock, H.L.; Wu, X.; Yang, W.; York, D.M.; Karplus, M. CHARMM: The biomolecular simulation program. J. Comput. Chem., 2009, 30(10), 1545-1614. doi: 10.1002/jcc.21287 PMID: 19444816
  31. Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; Jo, S.; Pande, V.S.; Case, D.A.; Brooks, C.L., III; MacKerell, A.D., Jr; Klauda, J.B. Im, W. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/openMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput., 2016, 12(1), 405-413. doi: 10.1021/acs.jctc.5b00935 PMID: 26631602
  32. Huang, J.; MacKerell, A.D., Jr CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem., 2013, 34(25), 2135-2145. doi: 10.1002/jcc.23354 PMID: 23832629
  33. Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem., 2005, 26(16), 1781-1802. doi: 10.1002/jcc.20289 PMID: 16222654
  34. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38. doi: 10.1016/0263-7855(96)00018-5
  35. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612. doi: 10.1002/jcc.20084 PMID: 15264254
  36. Gowers, R.J.; Linke, M.; Barnoud, J.; Reddy, T.J.E.; Melo, M.N.; Seyler, S.L.; Dotson, D.L.; Domanski, J.; Buchoux, S.; Kenney, I.M.; Beckstein, O. MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations. Proceedings of the 15th Python in Science Conference, 2016, pp. 98-105. doi: 10.25080/Majora-629e541a-00e
  37. Michaud-Agrawal, N.; Denning, E.J.; Woolf, T.B.; Beckstein, O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem., 2011, 32(10), 2319-2327. doi: 10.1002/jcc.21787 PMID: 21500218
  38. ACD ChemSketch. Advanced Chemistry Development. 2015. Available from: www.acdlabs.com
  39. Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4(1), 17. doi: 10.1186/1758-2946-4-17 PMID: 22889332
  40. Koes, D.R.; Baumgartner, M.P.; Camacho, C.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model., 2013, 53(8), 1893-1904. doi: 10.1021/ci300604z PMID: 23379370
  41. Newman, J.A.; Douangamath, A.; Yadzani, S.; Yosaatmadja, Y.; Aimon, A.; Brandão-Neto, J.; Dunnett, L.; Gorrie-stone, T.; Skyner, R.; Fearon, D.; Schapira, M.; von Delft, F.; Gileadi, O. Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase. Nat. Commun., 2021, 12(1), 4848. doi: 10.1038/s41467-021-25166-6 PMID: 34381037
  42. Dassault Systèmes. BIOVIA, Discovery studio visualiser., 2019. Available from: https://discover.3ds.com/discovery-studio-visualizer-download?gcl id=Cj0KCQjw_5unBhCMARIsACZyzS3LvCEwLJ4bXlKX30QKlP-jvjHjIcJLZnoqdJIW6DevTKusfqCYs7kaAiHHEALw_wcB
  43. Perez-Lemus, G.R.; Menéndez, C.A.; Alvarado, W.; Byléhn, F.; de Pablo, J.J. Toward wide-spectrum antivirals against coronaviruses: Molecular characterization of SARS-CoV-2 NSP13 helicase inhibitors. Sci. Adv., 2022, 8(1), eabj4526. doi: 10.1126/sciadv.abj4526 PMID: 34995115
  44. Taylor, R.D.; MacCoss, M.; Lawson, A.D.G. Rings in drugs. J. Med. Chem., 2014, 57(14), 5845-5859. doi: 10.1021/jm4017625 PMID: 24471928
  45. Shiryaev, V.A.; Klimochkin, Y.N. Heterocyclic inhibitors of viroporins in the design of antiviral compounds. Chem. Heterocycl. Compd., 2020, 56(6), 626-635. doi: 10.1007/s10593-020-02712-6 PMID: 32836315

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers