In silico Exploration of a Novel ICMT Inhibitor with More Solubility than Cysmethynil against Membrane Localization of KRAS Mutant in Colorectal Cancer


Cite item

Full Text

Abstract

Background:ICMT (isoprenylcysteine carboxyl methyltransferase) is an enzyme that plays a key role in the post-translational modification of the K-Ras protein. The carboxyl methylation of this protein by ICMT is important for its proper localization and function. Cysmethynil (2-[5-(3-methylphenyl)-l-octyl-lH-indolo-3-yl] acetamide) causes K-Ras mislocalization and interrupts pathways that control cancer cell growth and division through inhibition of ICMT, but its poor water solubility makes it difficult and impractical for clinical use. This indicates that relatively high amounts of cysmethynil would be required to achieve an effective dose, which could result in significant adverse effects in patients.

Objective:The general objective of this work was to find virtually new compounds that present high solubility in water and are similar to the pharmacological activity of cysmethynil.

Materials and Methods:Pharmacophore modeling, pharmacophore-based virtual screening, prediction of ADMET properties (absorption, distribution, metabolism, excretion, and toxicity), and water solubility were performed to recover a water-soluble molecule that shares the same chemical characteristics as cysmethynil using Discovery Studio v16.1.0 (DS16.1), SwissADME server, and pkCSM server.

Results:In this study, ten pharmacophore model hypotheses were generated by exploiting the characteristics of cysmethynil. The pharmacophore model validated by the set test method was used to screen the \"Elite Library®\" and \"Synergy Library\" databases of Asinex. Only 1533 compounds corresponding to all the characteristics of the pharmacophore were retained. Then, the aqueous solubility in water at 25°C of these 1533 compounds was predicted by the Cheng and Merz model. Among these 1533 compounds, two had the optimal water solubility. Finally, the ADMET properties and Log S water solubility by three models (ESOL, Ali, and SILICOS-IT) of the two compounds and cysmethynil were compared, resulting in compound 2 as a potential inhibitor of ICMT.

Conclusion:According to the results obtained, the identified compound presented a high solubility in water and could be similar to the pharmacological activity of cysmethynil.

About the authors

Mohammed Mouhcine

Laboratory of Pharmacology-Toxicology, Faculty of Medicine and Pharmacy of Casablanca,, University of Hassan II Casablanca

Author for correspondence.
Email: info@benthamscience.net

Youness Kadil

Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy of Casablanca,, University of Hassan II Casablanca

Email: info@benthamscience.net

Ibtihal Segmani

Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy of Casablanca,, University of Hassan II Casablanca

Email: info@benthamscience.net

Imane Rahmoune

Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy of Casablanca,, University of Hassan II Casablanca

Email: info@benthamscience.net

Houda Filali

Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy of Casablanca, University of Hassan II Casablanca

Email: info@benthamscience.net

References

  1. Sexton, R.E.; Mpilla, G.; Kim, S.; Philip, P.A.; Azmi, A.S. Ras and exosome signaling. Semin. Cancer Biol., 2019, 54, 131-137. doi: 10.1016/j.semcancer.2019.02.004 PMID: 30769101
  2. Ostrem, J.M.; Peters, U.; Sos, M.L.; Wells, J.A.; Shokat, K.M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature, 2013, 503(7477), 548-551. doi: 10.1038/nature12796 PMID: 24256730
  3. Ternet, C.; Kiel, C. Signaling pathways in intestinal homeostasis and colorectal cancer: KRAS at centre stage. Cell Commun. Signal., 2021, 19(1), 31. doi: 10.1186/s12964-021-00712-3 PMID: 33691728
  4. Di Nicolantonio, F.; Arena, S.; Tabernero, J.; Grosso, S.; Molinari, F.; Macarulla, T.; Russo, M.; Cancelliere, C.; Zecchin, D.; Mazzucchelli, L.; Sasazuki, T.; Shirasawa, S.; Geuna, M.; Frattini, M.; Baselga, J.; Gallicchio, M.; Biffo, S.; Bardelli, A. Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus. J. Clin. Invest., 2010, 120(8), 2858-2866. doi: 10.1172/JCI37539 PMID: 20664172
  5. Nussinov, R.; Tsai, C.J.; Muratcioglu, S.; Jang, H.; Gursoy, A.; Keskin, O. Principles of K-Ras effector organization and the role of oncogenic K-Ras in cancer initiation through G1 cell cycle deregulation. Expert Rev. Proteomics, 2015, 12(6), 669-682. doi: 10.1586/14789450.2015.1100079 PMID: 26496174
  6. Buscail, L.; Bournet, B.; Cordelier, P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(3), 153-168. doi: 10.1038/s41575-019-0245-4 PMID: 32005945
  7. Goitre, L.; Trapani, E.; Trabalzini, L.; Retta, S.F. The Ras Superfamily of Small GTPases: The Unlocked Secrets.Ras Signaling: Methods and Protocols; Trabalzini, L; Retta, S.F., Ed.; Humana Press: Totowa, NJ, 2014, pp. 1-18. doi: 10.1007/978-1-62703-791-4_1
  8. Timar, J.; Kashofer, K. Molecular epidemiology and diagnostics of KRAS mutations in human cancer. Cancer Metastasis Rev., 2020, 39(4), 1029-1038. doi: 10.1007/s10555-020-09915-5 PMID: 32725342
  9. Palmarocchi, M.C.; Fratti, M. Research progress on KRAS mutations in colorectal cancer.1. J. Cancer Metastasis Treat., 2021, 7.
  10. Arrington, A.K.; Heinrich, E.L.; Lee, W.; Duldulao, M.; Patel, S.; Sanchez, J.; Garcia-Aguilar, J.; Kim, J. Prognostic and predictive roles of KRAS mutation in colorectal cancer. Int. J. Mol. Sci., 2012, 13(12), 12153-12168. doi: 10.3390/ijms131012153 PMID: 23202889
  11. Gorfe, A.A.; Cho, K.J. Approaches to inhibiting oncogenic K-Ras. Small GTPases, 2021, 12(2), 96-105. doi: 10.1080/21541248.2019.1655883 PMID: 31438765
  12. Sogabe, S.; Kamada, Y.; Miwa, M.; Niida, A.; Sameshima, T.; Kamaura, M.; Yonemori, K.; Sasaki, S.; Sakamoto, J.; Sakamoto, K. Crystal Structure of a Human K-Ras G12D Mutant in Complex with GDP and the Cyclic Inhibitory Peptide KRpep-2d. ACS Med. Chem. Lett., 2017, 8(7), 732-736. doi: 10.1021/acsmedchemlett.7b00128 PMID: 28740607
  13. S. Hiraokaet al Laterally Spreading Type of Colorectal Adenoma Exhibits a Unique Methylation Phenotype and K-ras Mutations. Gastroenterology, 2006, 131(2), 379-389. doi: 10.1053/j.gastro.2006.04.027
  14. Liu, P.; Wang, Y.; Li, X. Targeting the untargetable KRAS in cancer therapy. Acta Pharm. Sin. B, 2019, 9(5), 871-879. doi: 10.1016/j.apsb.2019.03.002 PMID: 31649840
  15. Osaka, N.; Hirota, Y.; Ito, D.; Ikeda, Y.; Kamata, R.; Fujii, Y.; Chirasani, V.R.; Campbell, S.L.; Takeuchi, K.; Senda, T.; Sasaki, A.T. Divergent Mechanisms Activating RAS and Small GTPases Through Post-translational Modification. Front. Mol. Biosci., 2021, 8, 707439. doi: 10.3389/fmolb.2021.707439 PMID: 34307463
  16. Navarro-Lérida, I.; Sánchez-Álvarez, M.; del Pozo, M.Á. Post-Translational Modification and Subcellular Compartmentalization: Emerging Concepts on the Regulation and Physiopathological Relevance of RhoGTPases. Cells, 2021, 10(8), 1990. doi: 10.3390/cells10081990 PMID: 34440759
  17. Leonard, D.M. Ras farnesyltransferase: A new therapeutic target. J. Med. Chem., 1997, 40(19), 2971-2990. doi: 10.1021/jm970226l PMID: 9301658
  18. Cho, K.N.; Lee, K.I. Chemistry and biology of ras farnesyltransferase. Arch. Pharm. Res., 2002, 25(6), 759-769. doi: 10.1007/BF02976989 PMID: 12510823
  19. Wang, W.; Yuan, T.; Qian, M.; Yan, F.; Yang, L.; He, Q.; Yang, B.; Lu, J.; Zhu, H. Post-translational modification of KRAS: Potential targets for cancer therapy. Acta Pharmacol. Sin., 2021, 42(8), 1201-1211. doi: 10.1038/s41401-020-00542-y PMID: 33087838
  20. Ahearn, I.M.; Haigis, K.; Bar-Sagi, D.; Philips, M.R. Regulating the regulator: Post-translational modification of RAS. Nat. Rev. Mol. Cell Biol., 2012, 13(1), 39-51. doi: 10.1038/nrm3255 PMID: 22189424
  21. Friday, B.B.; Adjei, A.A. K-ras as a target for cancer therapy. Biochim. Biophys. Acta Rev. Cancer, 2005, 1756(2), 127-144. doi: 10.1016/j.bbcan.2005.08.001 PMID: 16139957
  22. Bergo, M.O.; Leung, G.K.; Ambroziak, P.; Otto, J.C.; Casey, P.J.; Young, S.G. Targeted inactivation of the isoprenylcysteine carboxyl methyltransferase gene causes mislocalization of K-Ras in mammalian cells. J. Biol. Chem., 2000, 275(23), 17605-17610. doi: 10.1074/jbc.C000079200 PMID: 10747846
  23. Bergo, M.O.; Gavino, B.J.; Hong, C.; Beigneux, A.P.; McMahon, M.; Casey, P.J.; Young, S.G. Inactivation of Icmt inhibits transformation by oncogenic K-Ras and B-Raf. J. Clin. Invest., 2004, 113(4), 539-550. doi: 10.1172/JCI200418829 PMID: 14966563
  24. Yang, W.S.; Yeo, S.G.; Yang, S.; Kim, K.H.; Yoo, B.C.; Cho, J.Y. Isoprenyl carboxyl methyltransferase inhibitors: A brief review including recent patents. Amino Acids, 2017, 49(9), 1469-1485. doi: 10.1007/s00726-017-2454-x PMID: 28631011
  25. Ramanujulu, P.M.; Yang, T.; Yap, S.Q.; Wong, F.C.; Casey, P.J.; Wang, M.; Go, M.L. Functionalized indoleamines as potent, drug-like inhibitors of isoprenylcysteine carboxyl methyltransferase (Icmt). Eur. J. Med. Chem., 2013, 63, 378-386. doi: 10.1016/j.ejmech.2013.02.007 PMID: 23514631
  26. Lau, H.Y.; Ramanujulu, P.M.; Guo, D.; Yang, T.; Wirawan, M.; Casey, P.J.; Go, M.L.; Wang, M. An improved isoprenylcysteine carboxylmethyltransferase inhibitor induces cancer cell death and attenuates tumor growth in vivo. Cancer Biol. Ther., 2014, 15(9), 1280-1291. doi: 10.4161/cbt.29692 PMID: 24971579
  27. Studio, B.D. BIOVIA, DassaultSystèmes, Discovery Studio Modeling Environment, v16.1.0; BIOVIA Discovery Studio: San Diego, CA, 2016.
  28. Sterling, T.; Irwin, J.J. ZINC 15 – Ligand Discovery for Everyone. J. Chem. Inf. Model., 2015, 55(11), 2324-2337. doi: 10.1021/acs.jcim.5b00559 PMID: 26479676
  29. Asinex 2016. Available From: http://www.asinex.com
  30. Cheng, A.; Merz, K.M., Jr Prediction of aqueous solubility of a diverse set of compounds using quantitative structure-property relationships. J. Med. Chem., 2003, 46(17), 3572-3580. doi: 10.1021/jm020266b PMID: 12904062
  31. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
  32. Hewitt, M.; Cronin, M.T.D.; Enoch, S.J.; Madden, J.C.; Roberts, D.W.; Dearden, J.C. In silico prediction of aqueous solubility: The solubility challenge. J. Chem. Inf. Model., 2009, 49(11), 2572-2587. doi: 10.1021/ci900286s PMID: 19877720
  33. Ali, J.; Camilleri, P.; Brown, M.B.; Hutt, A.J.; Kirton, S.B. In silico prediction of aqueous solubility using simple QSPR models: The importance of phenol and phenol-like moieties. J. Chem. Inf. Model., 2012, 52(11), 2950-2957. doi: 10.1021/ci300447c PMID: 23121381
  34. Delaney, J.S. ESOL: Estimating aqueous solubility directly from molecular structure. J. Chem. Inf. Comput. Sci., 2004, 44(3), 1000-1005. doi: 10.1021/ci034243x PMID: 15154768
  35. Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem., 2015, 58(9), 4066-4072. doi: 10.1021/acs.jmedchem.5b00104 PMID: 25860834
  36. Khan, A.Q.; Kuttikrishnan, S.; Siveen, K.S.; Prabhu, K.S.; Shanmugakonar, M. Al-Naemi, H.A.; Haris, M.; Dermime, S.; Uddin, S. RAS-mediated oncogenic signaling pathways in human malignancies. Semin. Cancer Biol., 2019, 54, 1-13. doi: 10.1016/j.semcancer.2018.03.001 PMID: 29524560
  37. Greenhough, A.; Patsos, H.A.; Williams, A.C.; Paraskeva, C. The cannabinoid δ 9 ‐tetrahydrocannabinol inhibits RAS‐MAPK and PI3K‐AKT survival signalling and induces BAD‐mediated apoptosis in colorectal cancer cells. Int. J. Cancer, 2007, 121(10), 2172-2180. doi: 10.1002/ijc.22917 PMID: 17583570
  38. Pantsar, T. The current understanding of KRAS protein structure and dynamics. Comput. Struct. Biotechnol. J., 2020, 18, 189-198. doi: 10.1016/j.csbj.2019.12.004 PMID: 31988705
  39. Lau, H.Y.; Tang, J.; Casey, P.J.; Wang, M. Isoprenylcysteine carboxylmethyltransferase is critical for malignant transformation and tumor maintenance by all RAS isoforms. Oncogene, 2017, 36(27), 3934-3942. doi: 10.1038/onc.2016.508 PMID: 28192404
  40. Wang, M.; Tan, W.; Zhou, J.; Leow, J.; Go, M.; Lee, H.S.; Casey, P.J. A small molecule inhibitor of isoprenylcysteine carboxymethyltransferase induces autophagic cell death in PC3 prostate cancer cells. J. Biol. Chem., 2008, 283(27), 18678-18684. doi: 10.1074/jbc.M801855200 PMID: 18434300

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers