Clodronic Acid has Strong Inhibitory Interactions with the Urease Enzyme of Helicobacter pylori: Computer-aided Design and in vitro Confirmation


Cite item

Full Text

Abstract

Background:Helicobacter Pylori (HP) infection could lead to various gastrointestinal diseases. Urease is the most important virulence factor of HP. It protects the bacterium against gastric acid.

Objective:Therefore, we aimed to design urease inhibitors as drugs against HP infection.

Methods:The DrugBank-approved library was assigned with 3D conformations and the structure of the urease was prepared. Using a re-docking strategy, the proper settings were determined for docking by PyRx and GOLD software. Virtual screening was performed to select the best inhibitory drugs based on binding affinity, FitnessScore, and binding orientation to critical amino acids of the active site. The best inhibitory drug was then evaluated by IC50 and the diameter of the zone of inhibition for bacterial growth.

Results:The structures of prepared drugs were screened against urease structure using the determined settings. Clodronic acid was determined to be the best-identified drug, due to higher PyRx binding energy, better GOLD FitnessScore, and interaction with critical amino acids of urease. In vitro results were also in line with the computational data. IC50 values of Clodronic acid and Acetohydroxamic Acid (AHA) were 29.78 ± 1.13 and 47.29 ± 2.06 µg/ml, respectively. Diameters of the zones of inhibition were 18 and 15 mm for Clodronic acid and AHA, respectively.

Conclusion:Clodronic acid has better HP urease inhibition potential than AHA. Given its approved status, the development of a repurposed drug based on Clodronic acid would require less time and cost. Further, in vivo studies would unveil the efficacy of Clodronic acid as a urease inhibitor.

About the authors

Mohsen Fath

Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University

Email: info@benthamscience.net

Saeed Khalili

Department of Biology Sciences, Shahid Rajaee Teacher Training University

Author for correspondence.
Email: info@benthamscience.net

Masoud Boojar

Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University

Author for correspondence.
Email: info@benthamscience.net

Zahra Hashemi

ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research

Email: info@benthamscience.net

Mahboubeh Zarei

Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences

Email: info@benthamscience.net

References

  1. Gravina, A.G.; Zagari, R.M.; Musis, C.D.; Romano, L.; Loguercio, C.; Romano, M. Helicobacter pylori and extragastric diseases: A review. World J. Gastroenterol., 2018, 24(29), 3204-3221. doi: 10.3748/wjg.v24.i29.3204 PMID: 30090002
  2. Hooi, J.K.Y.; Lai, W.Y.; Ng, W.K.; Suen, M.M.Y.; Underwood, F.E.; Tanyingoh, D.; Malfertheiner, P.; Graham, D.Y.; Wong, V.W.S.; Wu, J.C.Y.; Chan, F.K.L.; Sung, J.J.Y.; Kaplan, G.G.; Ng, S.C. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology, 2017, 153(2), 420-429. doi: 10.1053/j.gastro.2017.04.022 PMID: 28456631
  3. Rizzato, C.; Torres, J.; Kasamatsu, E.; Camorlinga-Ponce, M.; Bravo, M.M.; Canzian, F.; Kato, I. Potential role of biofilm formation in the development of digestive tract cancer with special reference to Helicobacter pylori infection. Front. Microbiol., 2019, 10, 846. doi: 10.3389/fmicb.2019.00846 PMID: 31110496
  4. Fleming, S.L.; Alcamo, I.E. Helicobacter pylori; Chelsea House, 2007.
  5. Mobley, H.L.; Mendz, G.L.; Hazell, S.L. Helicobacter pylori: physiology and genetics; ASM Press: Washington, DC, 2001. doi: 10.1128/9781555818005
  6. Eslick, G.D. Helicobacter pylori infection causes gastric cancer A review of the epidemiological, meta-analytic, and experimental evidence. World J. Gastroenterol., 2006, 12(19), 2991-2999. doi: 10.3748/wjg.v12.i19.2991 PMID: 16718777
  7. Lehours, P.; Ferrero, R.L. Review: Helicobacter: Inflammation, immunology, and vaccines. Helicobacter, 2019, 24(S1), e12644. doi: 10.1111/hel.12644 PMID: 31486236
  8. Sidebotham, R.L.; Worku, M.L.; Karim, Q.N.; Dhir, N.K.; Baron, J.H. How Helicobacter pylori urease may affect external pH and influence growth and motility in the mucus environment. Eur. J. Gastroenterol. Hepatol., 2003, 15(4), 395-401. doi: 10.1097/00042737-200304000-00010 PMID: 12655260
  9. Takeshita, H.; Watanabe, E.; Norose, Y.; Ito, Y.; Takahashi, H. Neutralizing antibodies for Helicobacter pylori urease inhibit bacterial colonization in the murine stomach in vivo. Biomed. Res., 2019, 40(2), 87-95. doi: 10.2220/biomedres.40.87 PMID: 30982804
  10. Mobley, H.L.; Island, M.D.; Hausinger, R.P. Molecular biology of microbial ureases. Microbiol. Rev., 1995, 59(3), 451-480. doi: 10.1128/mr.59.3.451-480.1995 PMID: 7565414
  11. Fuccio, L.; Laterza, L.; Zagari, R.M.; Cennamo, V.; Grilli, D.; Bazzoli, F. Treatment of Helicobacter pylori infection. BMJ, 2008, 337(sep15 1), a1454. doi: 10.1136/bmj.a1454 PMID: 18794181
  12. (a) Chey, W.D.; Leontiadis, G.I.; Howden, C.W.; Moss, S.F. ACG clinical guideline: Treatment of Helicobacter pylori infection. Am. J. Gastroenterol., 2017, 112(2), 212-239.; (b) Fallone, C.A.; Chiba, N.; van Zanten, S.V.; Fischbach, L.; Gisbert, J.P.; Hunt, R.H.; Jones, N.L.; Render, C.; Leontiadis, G.I.; Moayyedi, P. The Toronto consensus for the treatment of Helicobacter pylori infection in adults. Gastroenterology, 2016, 151(1), 51-69. e14. doi: 10.1053/j.gastro.2016.04.006; (c) Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y.; Hunt, R.; Moayyedi, P.; Rokkas, T.; Rugge, M.; Selgrad, M.; Suerbaum, S.; Sugano, K.; El-Omar, E.M. Management of Helicobacter pylori infection-the maastricht v/florence consensus report. Gut, 2017, 66(1), 6-30. doi: 10.1136/gutjnl-2016-312288 PMID: 27707777
  13. Hazell, S.; Lee, A. Campylobacter pyloridis, urease, hydrogen ion back diffusion, and gastric ulcers. Lancet, 1986, 328(8497), 15-17. doi: 10.1016/S0140-6736(86)92561-4 PMID: 2873317
  14. (a) Robinson, K.; Argent, R.H.; Atherton, J.C. The inflammatory and immune response to Helicobacter pylori infection. Best Pract. Res. Clin. Gastroenterol., 2007, 21(2), 237-259. doi: 10.1016/j.bpg.2007.01.001 PMID: 17382275; (b) Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N.; Aboderin, A.O.; Al-Abri, S.S.; Awang Jalil, N.; Benzonana, N.; Bhattacharya, S.; Brink, A.J.; Burkert, F.R.; Cars, O.; Cornaglia, G.; Dyar, O.J.; Friedrich, A.W.; Gales, A.C.; Gandra, S.; Giske, C.G.; Goff, D.A.; Goossens, H.; Gottlieb, T.; Guzman Blanco, M.; Hryniewicz, W.; Kattula, D.; Jinks, T.; Kanj, S.S.; Kerr, L.; Kieny, M-P.; Kim, Y.S.; Kozlov, R.S.; Labarca, J.; Laxminarayan, R.; Leder, K.; Leibovici, L.; Levy-Hara, G.; Littman, J.; Malhotra-Kumar, S.; Manchanda, V.; Moja, L.; Ndoye, B.; Pan, A.; Paterson, D.L.; Paul, M.; Qiu, H.; Ramon-Pardo, P.; Rodríguez-Baño, J.; Sanguinetti, M.; Sengupta, S.; Sharland, M.; Si-Mehand, M.; Silver, L.L.; Song, W.; Steinbakk, M.; Thomsen, J.; Thwaites, G.E.; van der Meer, J.W.M.; Van Kinh, N.; Vega, S.; Villegas, M.V.; Wechsler-Fördös, A.; Wertheim, H.F.L.; Wesangula, E.; Woodford, N.; Yilmaz, F.O.; Zorzet, A. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327. doi: 10.1016/S1473-3099(17)30753-3 PMID: 29276051
  15. Vita, N.A.; Anderson, S.M.; LaFleur, M.D.; Lee, R.E. Targeting Helicobacter pylori for antibacterial drug discovery with novel therapeutics. Curr. Opin. Microbiol., 2022, 70, 102203. doi: 10.1016/j.mib.2022.102203 PMID: 36156373
  16. Yang, W.; Feng, Q.; Peng, Z.; Wang, G. An overview on the synthetic urease inhibitors with structure-activity relationship and molecular docking. Eur. J. Med. Chem., 2022, 234, 114273. doi: 10.1016/j.ejmech.2022.114273 PMID: 35305460
  17. Chen, W.; Li, Y.; Cui, Y.; Zhang, X.; Zhu, H.L.; Zeng, Q. Synthesis, molecular docking and biological evaluation of Schiff base transition metal complexes as potential urease inhibitors. Eur. J. Med. Chem., 2010, 45(10), 4473-4478. doi: 10.1016/j.ejmech.2010.07.007 PMID: 20691510
  18. (a) Salehi Ashani, R.; Azizian, H.; Sadeghi Alavijeh, N.; Fathi Vavsari, V.; Mahernia, S.; Sheysi, N.; Biglar, M.; Amanlou, M.; Balalaie, S. Synthesis, biological evaluation and molecular docking of deferasirox and substituted 1,2,4‐triazole derivatives as novel potent urease inhibitors: Proposing repositioning candidate. Chem. Biodivers., 2020, 17(5), e1900710. doi: 10.1002/cbdv.201900710 PMID: 32187446; (b) Maz, T.G.; Caliskan, H.B.; Capan, I.; Caliskan, B.; Özçelik, B.; Banoglu, E. Design, synthesis and evaluation of aryl‐tailored oxadiazole‐thiones as new urease inhibitors. ChemistrySelect, 2023, 8(8), e202204449. doi: 10.1002/slct.202204449; (c) SarveAhrabi, Y. Anti-Helicobacter pylori activity of new derivatives of 1, 3,4-oxadiazole: In silico study. Avicenna J. Clin. Microbiol. Infect., 2021, 8(4), 135-138. doi: 10.34172/ajcmi.2021.25; (d) Khan, Y.; Maalik, A.; Rehman, W.; Hussain, R.; Khan, S.; Alanazi, M.M.; Asiri, H.H.; Iqbal, S. Identification of novel oxadiazole-based benzothiazole derivatives as potent inhibitors of α-glucosidase and urease: Synthesis, in vitro bio-evaluation and their in silico molecular docking study. J. Saudi Chem. Soc., 2023, 27(4), 101682. doi: 10.1016/j.jscs.2023.101682; (e) Rezaei, E.B.; Abedinifar, F.; Azizian, H.; Montazer, M.N.; Asadi, M.; Hosseini, S.; Sepehri, S.; Mohammadi-Khanaposhtani, M.; Biglar, M.; Larijani, B.; Amanlou, M.; Mahdavi, M. Design, synthesis, and evaluation of metronidazole-1,2,3-triazole derivatives as potent urease inhibitors. Chem. Pap., 2021, 75(8), 4217-4226. doi: 10.1007/s11696-021-01653-4; (f) Singh, R.; Kumar, P.; Devi, M.; Sindhu, J.; Kumar, A.; Lal, S.; Singh, D.; Kumar, H.; Kumar, S. Urease inhibition and structure‐activity relationship study of thiazolidinone‐, triazole‐, and benzothiazole‐based heterocyclic derivatives: A focus review. ChemistrySelect, 2023, 8(13), e202300244. doi: 10.1002/slct.202300244; (g) Song, W.Q.; Liu, M.L.; Li, S.Y.; Xiao, Z.P. Recent efforts in the discovery of urease inhibitor identifications. Curr. Top. Med. Chem., 2022, 22(2), 95-107. doi: 10.2174/1568026621666211129095441 PMID: 34844543
  19. (a) Menteşe, E.; Bektaş, H.; Sokmen, B.B.; Emirik, M.; Çakır, D.; Kahveci, B. Synthesis and molecular docking study of some 5,6-dichloro-2-cyclopropyl-1 H -benzimidazole derivatives bearing triazole, oxadiazole, and imine functionalities as potent inhibitors of urease. Bioorg. Med. Chem. Lett., 2017, 27(13), 3014-3018. doi: 10.1016/j.bmcl.2017.05.019 PMID: 28526368; (b) Ruhunage, S.; Udukala, D.N.; Gunaratna, M.J. Design, synthesis and evaluation of 3-hydroxy quinazolinone derivatives as urease inhibitors against Helicobacter pylori. Proceedings of the 1st International Conference on Frontiers in Chemical Technology, Colombo, Sri Lanka2020, p. 77.; (c) Baltaş, N. Synthesis of quinazolinone derivatives containing an acyl hydrazone skeleton as potent anti-urease agents enzyme kinetic studies and anti-oxidant properties. J. Chem. Res., 2022, 46(3) doi: 10.1177/17475198221096568; (d) Alwis, Y.V.; Gunaratna, M.J.; Udukala, D.N. Synthesis, evaluation and structure activity relationship study of 2-phenyl-3Hquinazolinone derivatives as urease inhibitors against Helicobacter pylori. Proceedings of the 1st International Conference on Frontiers in Chemical Technology, Colombo, Sri Lanka2020, p. 103.
  20. (a) Rauf, A.; Shahzad, S.; Bajda, M.; Yar, M.; Ahmed, F.; Hussain, N.; Akhtar, M.N.; Khan, A.; Jończyk, J. Design and synthesis of new barbituric- and thiobarbituric acid derivatives as potent urease inhibitors: Structure activity relationship and molecular modeling studies. Bioorg. Med. Chem., 2015, 23(17), 6049-6058. doi: 10.1016/j.bmc.2015.05.038 PMID: 26081763; (b) Sedaghati, S.; Azizian, H.; Montazer, M.N.; Mohammadi-Khanaposhtani, M.; Asadi, M.; Moradkhani, F.; Ardestani, M.S.; Asgari, M.S.; Yahya-Meymandi, A.; Biglar, M.; Larijani, B.; Sadat-Ebrahimi, S.E.; Foroumadi, A.; Amanlou, M.; Mahdavi, M. Novel (thio)barbituric-phenoxy-N-phenylacetamide derivatives as potent urease inhibitors: Synthesis, in vitro urease inhibition, and in silico evaluations. Struct. Chem., 2021, 32(1), 37-48. doi: 10.1007/s11224-020-01617-6; (c) Hosseinzadeh, N.; Nazari, M.M.; Mohammadi-Khanaposhtani, M.; Valizadeh, Y.; Amanlou, M.; Mahdavi, M. Rational design, synthesis, docking simulation, and admet prediction of novel barbituric‐hydrazine‐phenoxy‐1,2,3‐triazole‐acetamide derivatives as potent urease inhibitors. ChemistrySelect, 2023, 8(3), e202203297. doi: 10.1002/slct.202203297; (d) Mollazadeh, M.; Azizian, H.; Fakhrioliaei, A.; Iraji, A.; Avizheh, L.; Valizadeh, Y.; Zomorodian, K.; Elahi, F.; Moazzam, A.; Kazemzadeh, H.; Amanlou, M.; Garmciri, F.; Hamidian, E.; Biglar, M.; Larijani, B.; Mahdavi, M. Different barbiturate derivatives linked to aryl hydrazone moieties as urease inhibitors; design, synthesis, urease inhibitory evaluations, and molecular dynamic simulations. Med. Chem. Res., 2023, 32(5), 930-943. doi: 10.1007/s00044-023-03050-w
  21. (a) Taha, M.; Ismail, N.H.; Imran, S.; Wadood, A.; Rahim, F.; Khan, K.M.; Riaz, M. Hybrid benzothiazole analogs as antiurease agent: Synthesis and molecular docking studies. Bioorg. Chem., 2016, 66, 80-87. doi: 10.1016/j.bioorg.2016.03.010 PMID: 27038849; (b) Shahin, A.I.; Zaib, S.; Zaraei, S.O.; Kedia, R.A.; Anbar, H.S.; Younas, M.T.; Al-Tel, T.H.; Khoder, G.; El-Gamal, M.I. Design and synthesis of novel anti-urease imidazothiazole derivatives with promising antibacterial activity against Helicobacter pylori. PLoS One, 2023, 18(6), e0286684. doi: 10.1371/journal.pone.0286684 PMID: 37267378; (c) Mermer, A. Design, synthesize and antiurease activity of novel thiazole derivatives: Machine learning, molecular docking and biological investigation. J. Mol. Struct., 2020, 1222, 128860. doi: 10.1016/j.molstruc.2020.128860; (d) Channar, P.A.; Saeed, A.; Afzal, S.; Hussain, D.; Kalesse, M.; Shehzadi, S.A.; Iqbal, J. Hydrazine clubbed 1,3-thiazoles as potent urease inhibitors: design, synthesis and molecular docking studies. Mol. Divers., 2021, 25(2), 1-13. doi: 10.1007/s11030-020-10057-7 PMID: 32095975
  22. (a) Menteşe, E.; Emirik, M.; Sökmen, B.B. Design, molecular docking and synthesis of novel 5,6-dichloro-2-methyl-1H-benzimidazole derivatives as potential urease enzyme inhibitors. Bioorg. Chem., 2019, 86, 151-158. doi: 10.1016/j.bioorg.2019.01.061 PMID: 30710848; (b) Mohammed, S.O.; El Ashry, S.H.E.; Khalid, A.; Amer, M.R.; Metwaly, A.M.; Eissa, I.H.; Elkaeed, E.B.; Elshobaky, A.; Hafez, E.E. Expression, purification, and comparative inhibition of helicobacter pylori urease by regio-selectively alkylated benzimidazole 2-thione derivatives. Molecules, 2022, 27(3), 865. doi: 10.3390/molecules27030865 PMID: 35164122; (c) Saeedian Moghadam, E.; Mohammed Al-Sadi, A.; Ghafarzadegan, R.; Talebi, M.; Amanlou, M.; Amini, M.; Abdel-Jalil, R. Benzimidazole derivatives act as dual urease inhibitor and anti-Helicobacter pylori agent; synthesis, bioactivity, and molecular docking study. Synth. Commun., 2022, 52(6), 936-948. doi: 10.1080/00397911.2022.2061357; (d) Rostami, H.; Haddadi, M.H. Benzimidazole derivatives: A versatile scaffold for drug development against Helicobacter pylori ‐related diseases. Fundam. Clin. Pharmacol., 2022, 36(6), 930-943. doi: 10.1111/fcp.12810 PMID: 35716372; (e) Mumtaz, S.; Iqbal, S.; Shah, M.; Hussain, R.; Rahim, F.; Rehman, W.; Khan, S.; Abid, O.R.; Rasheed, L.; Dera, A.A.; Al-ghulikah, H.A.; Kehili, S.; Elkaeed, E.B.; Alrbyawi, H.; Alahmdi, M.I. New triazinoindole bearing benzimidazole/benzoxazole hybrids analogs as potent inhibitors of urease: Synthesis, in vitro analysis and molecular docking studies. Molecules, 2022, 27(19), 6580. doi: 10.3390/molecules27196580 PMID: 36235116; (f) Pereira, C.; de Lyra, A.; Oliveira, B.; Nascimento, I.; da Silva-Júnior, E.; de Aquino, T.; Sisto, F.; Figueiredo, I.; Martins, F.; Modolo, L.; Santos, J.; de Fátima, . 2-(Pyridin-4yl)benzothiazole and its benzimidazole-analogue: Biophysical and in silico studies on their interaction with urease and in vitro anti-Helicobacter pylori activities. J. Braz. Chem. Soc., 2022, 33, 1041-1057. doi: 10.21577/0103-5053.20220020
  23. (a) Xiao, Z.P.; Peng, Z.Y.; Dong, J.J.; Deng, R.C.; Wang, X.D.; Ouyang, H.; Yang, P.; He, J.; Wang, Y.F.; Zhu, M.; Peng, X.C.; Peng, W.X.; Zhu, H.L. Synthesis, molecular docking and kinetic properties of β-hydroxy-β-phenylpropionyl-hydroxamic acids as Helicobacter pylori urease inhibitors. Eur. J. Med. Chem., 2013, 68, 212-221. doi: 10.1016/j.ejmech.2013.07.047 PMID: 23974021; (b) Mamidala, R.; Bhimathati, S.R.S.; Vema, A. Discovery of novel dihydropyrimidine and hydroxamic acid hybrids as potent Helicobacter pylori urease inhibitors. Bioorg. Chem., 2021, 114, 105010. doi: 10.1016/j.bioorg.2021.105010 PMID: 34102519
  24. (a) Taha, M.; Ismail, N.H.; Khan, A.; Shah, S.A.A.; Anwar, A.; Halim, S.A.; Fatmi, M.Q.; Imran, S.; Rahim, F.; Khan, K.M. Synthesis of novel derivatives of oxindole, their urease inhibition and molecular docking studies. Bioorg. Med. Chem. Lett., 2015, 25(16), 3285-3289. doi: 10.1016/j.bmcl.2015.05.069 PMID: 26077497; (b) Kalatuwawege, I.P.; Gunaratna, M.J.; Udukala, D.N. Synthesis, in silico studies, and evaluation of syn and anti isomers of n-substituted indole-3-carbaldehyde oxime derivatives as urease inhibitors against Helicobacter pylori. Molecules, 2021, 26(21), 6658. doi: 10.3390/molecules26216658 PMID: 34771067; (c) Ullah, H.; Arshad, G.; Rahim, F.; Nawaz, A.; Khan, F.; Iqbal, N.; Hayat, S.; Zada, H.; Samad, A.; Wadood, A. Synthesis, in vitro urease inhibitory potential and molecular docking study of bis-indole bearing sulfonamide analogues. Chemical Data Collections, 2023, 44, 100999. doi: 10.1016/j.cdc.2023.100999
  25. (a) Kazmi, M.; Khan, I.; Khan, A.; Halim, S.A.; Saeed, A.; Mehsud, S.; Al-Harrasi, A.; Ibrar, A. Developing new hybrid scaffold for urease inhibition based on carbazole-chalcone conjugates: Synthesis, assessment of therapeutic potential and computational docking analysis. Bioorg. Med. Chem., 2019, 27(22), 115123. doi: 10.1016/j.bmc.2019.115123 PMID: 31623971; (b) Nusfa, M.; Gunaratna, M. Syntheses and evaluation of chalcone derivatives as urease inhibitors against Helicobacter pylori and their antioxidant behavior. International Conference on Applied and Pure Sciences, Sri Lanka2021.
  26. (a) Asghar, H.; Asghar, H.; Asghar, T. A review on anti-urease potential of coumarins. Curr. Drug Targets, 2021, 22(17), 1926-1943. doi: 10.2174/1389450122666210222091412 PMID: 33618646; (b) Khan, K.M.; Iqbal, S.; Lodhi, M.A.; Maharvi, G.M.; Perveen, S.; Choudhary, M.I.; Atta-ur-Rahman, ; Chohan, Z.H.; Supuran, C.T. Synthesis and urease enzyme inhibitory effects of some dicoumarols. J. Enzyme Inhib. Med. Chem., 2004, 19(4), 367-371. doi: 10.1080/14756360409162452 PMID: 15558955; (c) Khan, I.; Khan, A.; Ahsan Halim, S.; Saeed, A.; Mehsud, S.; Csuk, R.; Al-Harrasi, A.; Ibrar, A. Exploring biological efficacy of coumarin clubbed thiazolo3,2–b1,2,4triazoles as efficient inhibitors of urease: A biochemical and in silico approach. Int. J. Biol. Macromol., 2020, 142, 345-354. doi: 10.1016/j.ijbiomac.2019.09.105 PMID: 31593727; (d) Naz, F.; Kanwal, ; Latif, M.; Salar, U.; Khan, K.M.; al-Rashida, M.; Ali, I.; Ali, B.; Taha, M.; Perveen, S. 4-Oxycoumarinyl linked acetohydrazide Schiff bases as potent urease inhibitors. Bioorg. Chem., 2020, 105, 104365. doi: 10.1016/j.bioorg.2020.104365 PMID: 33091669
  27. (a) Kataria, R.; Khatkar, A. Molecular docking, synthesis, kinetics study, structure–activity relationship and ADMET analysis of morin analogous as Helicobacter pylori urease inhibitors. BMC Chem., 2019, 13(1), 45. doi: 10.1186/s13065-019-0562-2 PMID: 31384793; (b) Al-Rooqi, M.M.; Mughal, E.U.; Raja, Q.A.; Hussein, E.M.; Naeem, N.; Sadiq, A.; Asghar, B.H.; Moussa, Z.; Ahmed, S.A. Flavonoids and related privileged scaffolds as potential urease inhibitors: a review. RSC Advances, 2023, 13(5), 3210-3233. doi: 10.1039/D2RA08284E PMID: 36756398; (c) Sharaf, M.; Arif, M.; Hamouda, H.I.; Khan, S.; Abdalla, M.; Shabana, S.; Rozan, H.E.; Khan, T.U.; Chi, Z.; Liu, C. Preparation, urease inhibition mechanisms, and anti-Helicobacter pylori activities of hesperetin-7-rhamnoglucoside. Curr. Res. Microb. Sci., 2022, 3, 100103.
  28. (a) Gholivand, K.; Pooyan, M.; Mohammadpanah, F.; Pirastefar, F.; Junk, P.C.; Wang, J.; Ebrahimi, V.A.A.; Mani-Varnosfaderani, A. Synthesis, crystal structure and biological evaluation of new phosphoramide derivatives as urease inhibitors using docking, QSAR and kinetic studies. Bioorg. Chem., 2019, 86, 482-493. doi: 10.1016/j.bioorg.2019.01.064 PMID: 30772649; (b) Fiori-Duarte, A.T.; Rodrigues, R.P.; Kitagawa, R.R.; Kawano, D.F. Insights into the design of inhibitors of the urease enzyme-a major target for the treatment of Helicobacter pylori infections. Curr. Med. Chem., 2020, 27(23), 3967-3982. doi: 10.2174/0929867326666190301143549 PMID: 30827224
  29. (a) Arshia.; Begum, F.; Almandil, N.B.; Lodhi, M.A.; Khan, K.M.; Hameed, A.; Perveen, S. Synthesis and urease inhibitory potential of benzophenone sulfonamide hybrid in vitro and in silico. Bioorg. Med. Chem., 2019, 27(6), 1009-1022. doi: 10.1016/j.bmc.2019.01.043 PMID: 30738655; (b) Hamad, A.; Khan, M.A.; Rahman, K.M.; Ahmad, I.; Ul-Haq, Z.; Khan, S.; Shafiq, Z. Development of sulfonamide-based Schiff bases targeting urease inhibition: Synthesis, characterization, inhibitory activity assessment, molecular docking and ADME studies. Bioorg. Chem., 2020, 102, 104057. doi: 10.1016/j.bioorg.2020.104057 PMID: 32663667; (c) Ahmad, S.; Abdul Qadir, M.; Ahmed, M.; Imran, M.; Yousaf, N.; Wani, T.A.; Zargar, S.; Ali, I.; Muddassar, M. Exploring the potential of propanamide-sulfonamide based drug conjugates as dual inhibitors of urease and cyclooxygenase-2: biological and their in silico studies. Front Chem., 2023, 11, 1206380. doi: 10.3389/fchem.2023.1206380 PMID: 37601915
  30. (a) Wahid, S.; Jahangir, S.; Versiani, M.A.; Khan, K.M.; Salar, U.; Ashraf, M.; Farzand, U.; Wadood, A. Kanwal; Ashfaq-ur-Rehaman; Arshia; Taha, M.; Perveen, S. Atenolol thiourea hybrid as potent urease inhibitors: Design, biology-oriented drug synthesis, inhibitory activity screening, and molecular docking studies. Bioorg. Chem., 2020, 94, 103359. doi: 10.1016/j.bioorg.2019.103359 PMID: 31640931; (b) Zahra, U.; Zaib, S.; Saeed, A.; Rehman, M.; Shabir, G.; Alsaab, H.O.; Khan, I. New acetylphenol-based acyl thioureas broaden the scope of drug candidates for urease inhibition: synthesis, in vitro screening and in silico analysis. Int. J. Biol. Macromol., 2022, 198, 157-167. doi: 10.1016/j.ijbiomac.2021.12.064 PMID: 34953808; (c) Li, W.Y.; Ni, W.W.; Ye, Y.X.; Fang, H.L.; Pan, X.M.; He, J.L.; Zhou, T.L.; Yi, J.; Liu, S.S.; Zhou, M.; Xiao, Z.P.; Zhu, H.L. N -monoarylacetothioureas as potent urease inhibitors: Synthesis, SAR, and biological evaluation. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 404-413. doi: 10.1080/14756366.2019.1706503 PMID: 31880473
  31. Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58. doi: 10.1038/nrd.2018.168 PMID: 30310233
  32. (a) Khalili, S.; Rasaee, M.J.; Mousavi, S.L.; Amani, J.; Jahangiri, A.; Borna, H. In silico prediction and in vitro verification of a novel multi-epitope antigen for HBV detection. Mol. Gen. Microbiol. Virol., 2017, 32(4), 230-240. doi: 10.3103/S0891416817040097; (b) Rahbar, M.R.; Zarei, M.; Jahangiri, A.; Khalili, S.; Nezafat, N.; Negahdaripour, M.; Fattahian, Y.; Ghasemi, Y. Trimeric autotransporter adhesins in Acinetobacter baumannii, coincidental evolution at work. Infect. Genet. Evol., 2019, 71, 116-127. doi: 10.1016/j.meegid.2019.03.023 PMID: 30922803
  33. Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins, 2003, 52(4), 609-623. doi: 10.1002/prot.10465 PMID: 12910460
  34. (a) Arora, R.; Issar, U.; Kakkar, R. In silico study of the active site of Helicobacter pylori urease and its inhibition by hydroxamic acids. J. Mol. Graph. Model., 2018, 83, 64-73. doi: 10.1016/j.jmgm.2018.04.018 PMID: 29775804; (b) Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26. doi: 10.1016/S0169-409X(00)00129-0 PMID: 11259830; (c) Channar, P.; Saeed, A.; Albericio, F.; Larik, F.; Abbas, Q.; Hassan, M.; Raza, H.; Seo, S.Y. Sulfonamide-linked ciprofloxacin, sulfadiazine and amantadine derivatives as a novel class of inhibitors of jack bean urease; synthesis, kinetic mechanism and molecular docking. Molecules, 2017, 22(8), 1352. doi: 10.3390/molecules22081352 PMID: 28813027
  35. Abdul Fattah, T.; Saeed, A.; Channar, P.A.; Ashraf, Z.; Abbas, Q.; Hassan, M.; Larik, F.A. Synthesis, enzyme inhibitory kinetics, and computational studies of novel 1‐(2‐(4‐isobutylphenyl) propanoyl)‐3‐arylthioureas as Jack bean urease inhibitors. Chem. Biol. Drug Des., 2018, 91(2), 434-447. doi: 10.1111/cbdd.13090 PMID: 28834266
  36. (a) Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem., 1967, 39(8), 971-974. doi: 10.1021/ac60252a045; (b) Vosooghi, M.; Farzipour, S.; Saeedi, M.; Shareh, N.B.; Mahdavi, M.; Mahernia, S.; Foroumadi, A.; Amanlou, M.; Shafiee, A. Synthesis of novel 5-arylidene (thio) barbituric acid and evaluation of their urease inhibitory activity. J. Indian Chem. Soc., 2015, 12(8), 1487-1491.
  37. Liu, Q.; Shi, W.K.; Ren, S.Z.; Ni, W.W.; Li, W.Y.; Chen, H.M.; Liu, P.; Yuan, J.; He, X.S.; Liu, J.J.; Cao, P.; Yang, P.Z.; Xiao, Z.P.; Zhu, H.L. Arylamino containing hydroxamic acids as potent urease inhibitors for the treatment of Helicobacter pylori infection. Eur. J. Med. Chem., 2018, 156, 126-136. doi: 10.1016/j.ejmech.2018.06.065 PMID: 30006158
  38. Tan, L.; Li, C.; Chen, H.; Mo, Z.; Zhou, J.; Liu, Y.; Ma, Z.; Xu, Y.; Yang, X.; Xie, J.; Su, Z. Epiberberine, a natural protoberberine alkaloid, inhibits urease of Helicobacter pylori and jack bean: Susceptibility and mechanism. Eur. J. Pharm. Sci., 2017, 110, 77-86. doi: 10.1016/j.ejps.2017.02.004 PMID: 28167234
  39. (a) Zhou, J.T.; Li, C.L.; Tan, L.H.; Xu, Y.F.; Liu, Y.H.; Mo, Z.Z.; Dou, Y.X.; Su, R.; Su, Z.R.; Huang, P.; Xie, J.H. Inhibition of Helicobacter pylori and its associated urease by palmatine: investigation on the potential mechanism. PLoS One, 2017, 12(1), e0168944. doi: 10.1371/journal.pone.0168944 PMID: 28045966; (b) Pan, L.; Wang, C.; Yan, K.; Zhao, K.; Sheng, G.; Zhu, H.; Zhao, X.; Qu, D.; Niu, F.; You, Z. Synthesis, structures and Helicobacter pylori urease inhibitory activity of copper(II) complexes with tridentate aroylhydrazone ligands. J. Inorg. Biochem., 2016, 159, 22-28. doi: 10.1016/j.jinorgbio.2016.02.017 PMID: 26908284
  40. (a) Kuipers, E.J.; Uyterlinde, A.M.; Peña, A.S.; Hazenberg, H.J.; Bloemena, E.; Lindeman, J.; Klinkenberg-Knol, E.C.; Meuwissen, S.G. Increase of Helicobacter pylori-associated corpus gastritis during acid suppressive therapy: implications for long-term safety. Am. J. Gastroenterol., 1995, 90(9), 1401-1406. PMID: 7661157; (b) Mobley, H.L.; Hausinger, R.P. Microbial ureases: Significance, regulation, and molecular characterization. Microbiol. Rev., 1989, 53(1), 85-108. doi: 10.1128/mr.53.1.85-108.1989 PMID: 2651866
  41. Hassan, S.; Švajdlenka, E. Biological evaluation and molecular docking of protocatechuic acid from Hibiscus sabdariffa L. as a potent urease inhibitor by an ESI-MS based method. Molecules, 2017, 22(10), 1696. doi: 10.3390/molecules22101696 PMID: 29019930
  42. Wang, S.; Haapalainen, A.M.; Yan, F.; Du, Q.; Tyler, P.C.; Evans, G.B.; Rinaldo-Matthis, A.; Brown, R.L.; Norris, G.E.; Almo, S.C.; Schramm, V.L. A picomolar transition state analogue inhibitor of MTAN as a specific antibiotic for Helicobacter pylori. Biochemistry, 2012, 51(35), 6892-6894. doi: 10.1021/bi3009664 PMID: 22891633
  43. (a) Mugengana, A.K.; Vita, N.A.; Brown Gandt, A.; Moran, K.; Agyapong, G.; Sharma, L.K.; Griffith, E.C.; Liu, J.; Yang, L.; Gavrish, E.; Hevener, K.E.; LaFleur, M.D.; Lee, R.E. The discovery and development of thienopyrimidines as inhibitors of Helicobacter pylori that act through inhibition of the respiratory complex I. ACS Infect. Dis., 2021, 7(5), 1044-1058. doi: 10.1021/acsinfecdis.0c00300 PMID: 33471519; (b) Carcanague, D.; Shue, Y.K.; Wuonola, M.A.; Uria-Nickelsen, M.; Joubran, C.; Abedi, J.K.; Jones, J.; Kühler, T.C. Novel structures derived from 2-(2-pyridyl)methylthio-1H-benzimidazole as anti-Helicobacter pylori agents, Part 2. J. Med. Chem., 2002, 45(19), 4300-4309. doi: 10.1021/jm020868v PMID: 12213071
  44. Freigang, J.; Diederichs, K.; Schäfer, K.P.; Welte, W.; Paul, R. Crystal structure of oxidized flavodoxin, an essential protein in Helicobacter pylori. Protein Sci., 2002, 11(2), 253-261. doi: 10.1110/ps.28602 PMID: 11790835
  45. (a) Griffith, D.P.; Gleeson, M.J.; Lee, H.; Longuet, R.; Deman, E.; Earle, N. Randomized, double-blind trial of Lithostat (acetohydroxamic acid) in the palliative treatment of infection-induced urinary calculi. Eur. Urol., 1991, 20(3), 243-247. doi: 10.1159/000471707 PMID: 1726639; (b) Kosikowska, P.; Berlicki, Ł. Urease inhibitors as potential drugs for gastric and urinary tract infections: A patent review. Expert Opin. Ther. Pat., 2011, 21(6), 945-957. doi: 10.1517/13543776.2011.574615 PMID: 21457123
  46. (a) Modak, J.K.; Tikhomirova, A.; Gorrell, R.J.; Rahman, M.M.; Kotsanas, D.; Korman, T.M.; Garcia-Bustos, J.; Kwok, T.; Ferrero, R.L.; Supuran, C.T.; Roujeinikova, A. Anti-Helicobacter pylori activity of ethoxzolamide. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1660-1667. doi: 10.1080/14756366.2019.1663416 PMID: 31530039; (b) Rahman, M.M.; Tikhomirova, A.; Modak, J.K.; Hutton, M.L.; Supuran, C.T.; Roujeinikova, A. Antibacterial activity of ethoxzolamide against Helicobacter pylori strains SS1 and 26695. Gut Pathog., 2020, 12(1), 20. doi: 10.1186/s13099-020-00358-5 PMID: 32318117
  47. Frediani, B.; Cavalieri, L.; Cremonesi, G. Clodronic acid formulations available in Europe and their use in osteoporosis: A review. Clin. Drug Investig., 2009, 29(6), 359-379. doi: 10.2165/00044011-200929060-00001 PMID: 19432497
  48. Amtul, Z.; Atta-ur-Rahman, B.S.P.; Siddiqui, R.; Choudhary, M. Chemistry and mechanism of urease inhibition. Curr. Med. Chem., 2002, 9(14), 1323-1348. doi: 10.2174/0929867023369853 PMID: 12132990
  49. (a) Abid, O.R.; Babar, T.M.; Ali, F.I.; Ahmed, S.; Wadood, A.; Rama, N.H.; Uddin, R. Zaheer-ul-Haq; Khan, A.; Choudhary, M.I. Identification of novel urease inhibitors by high-throughput virtual and in vitro screening. ACS Med. Chem. Lett., 2010, 1(4), 145-149. doi: 10.1021/ml100068u PMID: 24900188; (b) Akhtar, T.; Hameed, S.; Khan, K.; Choudhary, M. Syntheses, urease inhibition, and antimicrobial studies of some chiral 3-substituted-4-amino-5-thioxo-1H,4H-1,2,4-triazoles. Med. Chem., 2008, 4(6), 539-543. doi: 10.2174/157340608786242025 PMID: 18991737
  50. Pervez, H.; Chohan, Z.H.; Ramzan, M.; Nasim, F.U.H.; Khan, K.M. Synthesis and biological evaluation of some new N 4 -substituted isatin-3-thiosemicarbazones. J. Enzyme Inhib. Med. Chem., 2009, 24(2), 437-446. doi: 10.1080/14756360802188420 PMID: 18629680
  51. Cui, Y.; Dong, X.; Li, Y.; Li, Z.; Chen, W. Synthesis, structures and urease inhibition studies of Schiff base metal complexes derived from 3,5-dibromosalicylaldehyde. Eur. J. Med. Chem., 2012, 58, 323-331. doi: 10.1016/j.ejmech.2012.09.037 PMID: 23142672
  52. Perveen, S.; Khan, K.M.; Lodhi, M.A.; Choudhary, M.I. Atta-ur-Rahman; Voelter, W. Urease and α-chymotrypsin inhibitory effects of selected urea derivatives. Lett. Drug Des. Discov., 2008, 5(6), 401-405. doi: 10.2174/157018008785777315
  53. Hanif, M.; Shoaib, K.; Saleem, M.; Hasan Rama, N.; Zaib, S.; Iqbal, J. Synthesis, urease inhibition, antioxidant, antibacterial, and molecular docking studies of 1, 3, 4-oxadiazole derivatives. ISRN Pharmacol., 2012, 2012, 928901.
  54. Mohammed Khan, K.; Saify, Z.S.; Arif Lodhi, M.; Butt, N.; Perveen, S.; Murtaza Maharvi, G.; Iqbal Choudhary, M. Atta-ur-rahman, Piperidines: A new class of Urease inhibitors. Nat. Prod. Res., 2006, 20(6), 523-530. doi: 10.1080/1478641500059383 PMID: 16835082
  55. Vassiliou, S.; Kosikowska, P.; Grabowiecka, A.; Yiotakis, A.; Kafarski, P.; Berlicki, Ł. Computer-aided optimization of phosphinic inhibitors of bacterial ureases. J. Med. Chem., 2010, 53(15), 5597-5606. doi: 10.1021/jm100340m PMID: 20684601
  56. Habala, L.; Devínsky, F.; Egger, A.E. REVIEW: Metal complexes as urease inhibitors. J. Coord. Chem., 2018, 71(7), 907-940. doi: 10.1080/00958972.2018.1458228
  57. Pedrood, K.; Azizian, H.; Montazer, M.N.; Mohammadi-Khanaposhtani, M.; Asgari, M.S.; Asadi, M.; Bahadorikhalili, S.; Rastegar, H.; Larijani, B.; Amanlou, M.; Mahdavi, M. Arylmethylene hydrazine derivatives containing 1,3-dimethylbarbituric moiety as novel urease inhibitors. Sci. Rep., 2021, 11(1), 10607. doi: 10.1038/s41598-021-90104-x PMID: 34012008
  58. (a) Jones, B.D.; Mobley, H.L. Proteus mirabilis urease: Nucleotide sequence determination and comparison with jack bean urease. J. Bacteriol., 1989, 171(12), 6414-6422. doi: 10.1128/jb.171.12.6414-6422.1989 PMID: 2687233; (b) Sirko, A.; Brodzik, R. Plant ureases: Roles and regulation. Acta Biochim. Pol., 2000, 47(4), 1189-1195. doi: 10.18388/abp.2000_3972 PMID: 11996109
  59. Kataria, R.; Khatkar, A. In-silico design, synthesis, ADMET studies and biological evaluation of novel derivatives of Chlorogenic acid against Urease protein and H. pylori bacterium. BMC Chem., 2019, 13(1), 41. doi: 10.1186/s13065-019-0556-0 PMID: 31384789
  60. Nabati, F.; Mojab, F.; Habibi-Rezaei, M.; Bagherzadeh, K.; Amanlou, M.; Yousefi, B. Large scale screening of commonly used Iranian traditional medicinal plants against urease activity. Daru, 2012, 20(1), 72. doi: 10.1186/2008-2231-20-72 PMID: 23351780

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers