Mechanisms of Stem Cells and Their Secreted Exosomes in the Treatment of Autoimmune Diseases
- Authors: Lin S.1, Wang K.1, Pan X.2, Ruan G.2
-
Affiliations:
- , Clinical College of the 920th Hospital of Kunming Medical University
- Basic medical laboratory, 920 Hospital of Joint Logistic Support Force of the Chinese People Liberation Army
- Issue: Vol 19, No 11 (2024)
- Pages: 1415-1428
- Section: Medicine
- URL: https://ruspoj.com/1574-888X/article/view/645566
- DOI: https://doi.org/10.2174/011574888X271344231129053003
- ID: 645566
Cite item
Full Text
Abstract
:Stem cells play a therapeutic role in many diseases by virtue of their strong self-renewal and differentiation abilities, especially in the treatment of autoimmune diseases. At present, the mechanism of the stem cell treatment of autoimmune diseases mainly relies on their immune regulation ability, regulating the number and function of auxiliary cells, anti-inflammatory factors and proinflammatory factors in patients to reduce inflammation. On the other hand, the stem cell- derived secretory body has weak immunogenicity and low molecular weight, can target the site of injury, and can extend the length of its active time in the patient after combining it with the composite material. Therefore, the role of secretory bodies in the stem cell treatment of autoimmune diseases is increasingly important.
About the authors
Shu-Qian Lin
, Clinical College of the 920th Hospital of Kunming Medical University
Email: info@benthamscience.net
Kai Wang
, Clinical College of the 920th Hospital of Kunming Medical University
Email: info@benthamscience.net
Xing-Hua Pan
Basic medical laboratory, 920 Hospital of Joint Logistic Support Force of the Chinese People Liberation Army
Email: info@benthamscience.net
Guang-Ping Ruan
Basic medical laboratory, 920 Hospital of Joint Logistic Support Force of the Chinese People Liberation Army
Author for correspondence.
Email: info@benthamscience.net
References
- Liu, G.; David, B.T.; Trawczynski, M.; Fessler, R.G. Advances in pluripotent stem cells: History, mechanisms, technologies, and applications. Stem Cell Rev. Rep., 2020, 16(1), 3-32. doi: 10.1007/s12015-019-09935-x PMID: 31760627
- Caplan, A.I. Mesenchymal stem cells: Time to change the name! Stem Cells Transl. Med., 2017, 6(6), 1445-1451. doi: 10.1002/sctm.17-0051 PMID: 28452204
- Tsiapalis, D.; ODriscoll, L. Mesenchymal stem cell derived extracellular vesicles for tissue engineering and regenerative medicine applications. Cells, 2020, 9(4), 991. doi: 10.3390/cells9040991 PMID: 32316248
- Kurup, S.; Pozun, A. Biochemistry, autoimmunity. In: StatPearls. edn. Treasure island (FL) ineligible companies. Disclosure. In: Alexander Pozun declares no relevant financial relationships with ineligible companies; StatPearls Publishing, 2023.
- Wigerblad, G.; Kaplan, M.J. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat. Rev. Immunol., 2023, 23(5), 274-288. doi: 10.1038/s41577-022-00787-0 PMID: 36257987
- He, J.; Chen, J.; Miao, M.; Zhang, R.; Cheng, G.; Wang, Y.; Feng, R.; Huang, B.; Luan, H.; Jia, Y.; Jin, Y.; Zhang, X.; Shao, M.; Wang, Y.; Zhang, X.; Li, J.; Zhao, X.; Wang, H.; Liu, T.; Xiao, X.; Zhang, X.; Su, Y.; Mu, R.; Ye, H.; Li, R.; Liu, X.; Liu, Y.; Li, C.; Liu, H.; Hu, F.; Guo, J.; Liu, W.; Zhang, W.B.; Jacob, A.; Ambrus, J.L., Jr; Ding, C.; Yu, D.; Sun, X.; Li, Z. Efficacy and safety of low-dose interleukin 2 for primary sjögren syndrome. JAMA Netw. Open, 2022, 5(11), e2241451. doi: 10.1001/jamanetworkopen.2022.41451 PMID: 36355371
- Zhang, P.; Dong, B.; Yuan, P.; Li, X. Human umbilical cord mesenchymal stem cells promoting knee joint chondrogenesis for the treatment of knee osteoarthritis: A systematic review. J. Orthop. Surg. Res., 2023, 18(1), 639. doi: 10.1186/s13018-023-04131-7 PMID: 37644595
- Vaillant, A.A.; Qurie, A. Immunodeficiency. In: StatPearls. edn. Treasure Island (FL) with ineligible companies. Disclosure. In: Ahmad Qurie declares no relevant financial relationships with ineligible companies; StatPearls Publishing, 2023.
- Ghoryani, M.; Shariati-Sarabi, Z.; Tavakkol-Afshari, J.; Ghasemi, A.; Poursamimi, J.; Mohammadi, M. Amelioration of clinical symptoms of patients with refractory rheumatoid arthritis following treatment with autologous bone marrow-derived mesenchymal stem cells: A successful clinical trial in Iran. Biomed. Pharmacother., 2019, 109, 1834-1840. doi: 10.1016/j.biopha.2018.11.056 PMID: 30551438
- Grigoriou, M.; Banos, A.; Filia, A.; Pavlidis, P.; Giannouli, S.; Karali, V.; Nikolopoulos, D.; Pieta, A.; Bertsias, G.; Verginis, P.; Mitroulis, I.; Boumpas, D.T. Transcriptome reprogramming and myeloid skewing in haematopoietic stem and progenitor cells in systemic lupus erythematosus. Ann. Rheum. Dis., 2020, 79(2), 242-253. doi: 10.1136/annrheumdis-2019-215782 PMID: 31780527
- Jaime-Pérez, J.C.; González-Treviño, M.; Meléndez-Flores, J.D.; Ramos-Dávila, E.M.; Cantú-Rodriguez, O.G.; Gutiérrez-Aguirre, C.H.; Galarza-Delgado, D.A.; Gómez-Almaguer, D. Autologous ATG-free hematopoietic stem cell transplantation for refractory autoimmune rheumatic diseases: A Latin American cohort. Clin. Rheumatol., 2022, 41(3), 869-876. doi: 10.1007/s10067-021-05931-0 PMID: 34585327
- Vaillant, A.A.; Sabir, S.; Jan, A. Physiology, immune response. In: In: StatPearls. edn. Treasure Island (FL) with ineligible companies; StatPearls Publishing, 2023.
- Sapkota, B.; Al Khalili, Y. Mixed connective tissue disease. In: In: StatPearls. edn. Treasure Island (FL) ineligible companies. Disclosure: Yasir Al Khalili declares no relevant financial relationships with ineligible companies; StatPearls Publishing, 2023.
- Jalalvand, M.; Enayati, S.; Akhtari, M.; Madreseh, E.; Jamshidi, A.; Farhadi, E.; Mahmoudi, M.; Amirzargar, A. Blood regulatory T cells in inflammatory bowel disease, a systematic review, and meta-analysis. Int. Immunopharmacol., 2023, 117, 109824. doi: 10.1016/j.intimp.2023.109824 PMID: 36827916
- Silva, T.; Alencar, R.C.; de Souza Silva, B.C.; Viana, E.C.O.M.; Fragoso, Y.D.; Gomes, A.O.; Cristina Chavantes, M.; Deana, A.M.; Gallo, J.M.A.S.; Fernandes, K.P.S.; Mesquita-Ferrari, R.A.; Bussadori, S.K. Effect of photobiomodulation on fatigue in individuals with relapsingremitting multiple sclerosis: a pilot study. Lasers Med. Sci., 2022, 37(8), 3107-3113. doi: 10.1007/s10103-022-03567-3 PMID: 35499744
- Van Rampelbergh, J.; Achenbach, P.; Leslie, R.D.; Ali, M.A.; Dayan, C.; Keymeulen, B.; Owen, K.R.; Kindermans, M.; Parmentier, F.; Carlier, V.; Ahangarani, R.R.; Gebruers, E.; Bovy, N.; Vanderelst, L.; Van Mechelen, M.; Vandepapelière, P.; Boitard, C. First-in-human, double-blind, randomized phase 1b study of peptide immunotherapy IMCY-0098 in new-onset type 1 diabetes. BMC Med., 2023, 21(1), 190. doi: 10.1186/s12916-023-02900-z PMID: 37226224
- Vaillant, A.A.; Goyal, A.; Varacallo, M. Systemic lupus erythematosus. In: 2023 Aug 4. In: StatPearls Internet. Treasure Island (FL); StatPearls Publishing, 2023.
- Shan, J.; Jin, H.; Xu, Y. T cell metabolism: A new perspective on Th17/Treg cell imbalance in systemic lupus erythematosus. Front. Immunol., 2020, 11, 1027. doi: 10.3389/fimmu.2020.01027 PMID: 32528480
- Zhou, C.; Bai, X.; Yang, Y.; Shi, M.; Bai, X.Y. Single-cell sequencing informs that mesenchymal stem cell alleviates renal injury through regulating kidney regional immunity in lupus nephritis. Stem Cells Dev., 2023, 32(15-16), 465-483. doi: 10.1089/scd.2023.0047 PMID: 37082951
- Geng, L.; Tang, X.; Wang, S.; Sun, Y.; Wang, D.; Tsao, B.P.; Feng, X.; Sun, L. Reduced Let-7f in bone marrow-derived mesenchymal stem cells triggers Treg/Th17 imbalance in patients with systemic lupus erythematosus. Front. Immunol., 2020, 11, 233. doi: 10.3389/fimmu.2020.00233 PMID: 32133007
- Geng, L.; Sun, L. MicroRNAs in mesenchymal stem cells: The key to decoding systemic lupus erythematosus. Cell. Mol. Immunol., 2021, 18(9), 2286-2287. doi: 10.1038/s41423-021-00722-8 PMID: 34321620
- Li, W.; Chen, W.; Sun, L. An update for mesenchymal stem cell therapy in lupus nephritis. Kidney Dis., 2021, 7(2), 79-89. doi: 10.1159/000513741 PMID: 33824866
- Cheng, T.; Ding, S.; Liu, S.; Li, Y.; Sun, L. Human umbilical cord-derived mesenchymal stem cell therapy ameliorate lupus through increasing CD4+ T cell senescence via MiR-199a-5p/Sirt1/p53 axis. Theranostics, 2021, 11(2), 893-905. doi: 10.7150/thno.48080 PMID: 33391511
- Gao, L.; O Connell, M.; Allen, M.; Liesveld, J.; McDavid, A.; Anolik, J.H.; Looney, R.J. Bone marrow mesenchymal stem cells from patients with SLE maintain an interferon signature during in vitro culture. Cytokine, 2020, 132, 154725. doi: 10.1016/j.cyto.2019.05.012 PMID: 31153744
- Wei, S.; Xie, S.; Yang, Z.; Peng, X.; Gong, L.; Zhao, K.; Zeng, K.; Lai, K. Allogeneic adipose-derived stem cells suppress mTORC1 pathway in a murine model of systemic lupus erythematosus. Lupus, 2019, 28(2), 199-209. doi: 10.1177/0961203318819131 PMID: 30572770
- Chun, W.; Tian, J.; Zhang, Y. Transplantation of mesenchymal stem cells ameliorates systemic lupus erythematosus and upregulates B10 cells through TGF-β1. Stem Cell Res. Ther., 2021, 12(1), 512. doi: 10.1186/s13287-021-02586-1 PMID: 34563233
- Zhang, M.; Johnson-Stephenson, T.K.; Wang, W.; Wang, Y.; Li, J.; Li, L.; Zen, K.; Chen, X.; Zhu, D. Mesenchymal stem cell-derived exosome-educated macrophages alleviate systemic lupus erythematosus by promoting efferocytosis and recruitment of IL-17+ regulatory T cell. Stem Cell Res. Ther., 2022, 13(1), 484. doi: 10.1186/s13287-022-03174-7 PMID: 36153633
- Dou, R.; Zhang, X.; Xu, X.; Wang, P.; Yan, B. Mesenchymal stem cell exosomal tsRNA-21109 alleviate systemic lupus erythematosus by inhibiting macrophage M1 polarization. Mol. Immunol., 2021, 139, 106-114. doi: 10.1016/j.molimm.2021.08.015 PMID: 34464838
- Sun, W.; Yan, S.; Yang, C.; Yang, J.; Wang, H.; Li, C.; Zhang, L.; Zhao, L.; Zhang, J.; Cheng, M.; Li, X.; Xu, D. Mesenchymal stem cells-derived exosomes ameliorate lupus by inducing m2 macrophage polarization and regulatory T cell expansion in MRL/lpr Mice. Immunol. Invest., 2022, 51(6), 1785-1803. doi: 10.1080/08820139.2022.2055478 PMID: 35332841
- Tu, J.; Zheng, N.; Mao, C.; Liu, S.; Zhang, H.; Sun, L. UC-BSCs exosomes regulate Th17/Treg balance in patients with systemic lupus erythematosus via miR-19b/KLF13. Cells, 2022, 11(24), 4123. doi: 10.3390/cells11244123 PMID: 36552891
- Cao, Z.; Wang, D.; Jing, L.; Wen, X.; Xia, N.; Ma, W.; Zhang, X.; Jin, Z.; Shen, W.; Yao, G.; Chen, W.; Tang, X.; Geng, L.; Li, H.; Li, X.; Ding, S.; Liang, J.; Feng, X.; Zhang, H.; Liu, S.; Li, W.; Sun, L. Allogenic umbilical cord-derived mesenchymal stromal cells sustain long-term therapeutic efficacy compared with low-dose interleukin-2 in systemic lupus erythematosus. Stem Cells Transl. Med., 2023, 12(7), 431-443. doi: 10.1093/stcltm/szad032 PMID: 37279956
- Hoseinzadeh, A.; Rezaieyazdi, Z.; Mahmoudi, M.; Tavakol Afshari, J.; Lavi Arab, F.; Esmaeili, S.A.; Faridzadeh, A.; Rezaeian, A.; Hoseini, S.; Barati, M.; Mahmoudi, A.; Sadat Tabasi, N. Dysregulated balance in Th17/Treg axis of Pristane-induced lupus mouse model, are mesenchymal stem cells therapeutic? Int. Immunopharmacol., 2023, 117, 109699. doi: 10.1016/j.intimp.2023.109699 PMID: 36867923
- Hernandez, G.; Mills, T.S.; Rabe, J.L.; Chavez, J.S.; Kuldanek, S.; Kirkpatrick, G.; Noetzli, L.; Jubair, W.K.; Zanche, M.; Myers, J.R.; Stevens, B.M.; Fleenor, C.J.; Adane, B.; Dinarello, C.A.; Ashton, J.; Jordan, C.T.; Di Paola, J.; Hagman, J.R.; Holers, V.M.; Kuhn, K.A.; Pietras, E.M. Pro-inflammatory cytokine blockade attenuates myeloid expansion in a murine model of rheumatoid arthritis. Haematologica, 2020, 105(3), 585-597. doi: 10.3324/haematol.2018.197210 PMID: 31101752
- Colmegna, I.; Weyand, C.M. Haematopoietic stem and progenitor cells in rheumatoid arthritis. Rheumatology, 2011, 50(2), 252-260. doi: 10.1093/rheumatology/keq298 PMID: 20837497
- Hirohata, S.; Yanagida, T.; Nagai, T.; Sawada, T.; Nakamura, H.; Yoshino, S.; Tomita, T.; Ochi, T. Induction of fibroblast- like cells from CD34+ progenitor cells of the bone marrow in rheumatoid arthritis. J. Leukoc. Biol., 2001, 70(3), 413-421. doi: 10.1189/jlb.70.3.413 PMID: 11527991
- Zheng, J.; Zhu, L.; Iok In, I.; Chen, Y.; Jia, N.; Zhu, W. Retracted: Bone marrow-derived mesenchymal stem cells-secreted exosomal microRNA-192-5p delays inflammatory response in rheumatoid arthritis. Int. Immunopharmacol., 2020, 78, 105985. doi: 10.1016/j.intimp.2019.105985 PMID: 31776092
- Liu, H.; Li, R.; Liu, T.; Yang, L.; Yin, G.; Xie, Q. Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Front. Immunol., 2020, 11, 1912. doi: 10.3389/fimmu.2020.01912 PMID: 32973792
- Liu, R.; Li, X.; Zhang, Z.; Zhou, M.; Sun, Y.; Su, D.; Feng, X.; Gao, X.; Shi, S.; Chen, W.; Sun, L. Allogeneic mesenchymal stem cells inhibited T follicular helper cell generation in rheumatoid arthritis. Sci. Rep., 2015, 5(1), 12777. doi: 10.1038/srep12777 PMID: 26259824
- Vasilev, G.; Ivanova, M.; Ivanova-Todorova, E.; Tumangelova-Yuzeir, K.; Krasimirova, E.; Stoilov, R.; Kyurkchiev, D. Secretory factors produced by adipose mesenchymal stem cells downregulate Th17 and increase Treg cells in peripheral blood mononuclear cells from rheumatoid arthritis patients. Rheumatol. Int., 2019, 39(5), 819-826. doi: 10.1007/s00296-019-04296-7 PMID: 30944956
- Burt, R.K.; Oyama, Y.; Verda, L.; Quigley, K.; Brush, M.; Yaung, K.; Statkute, L.; Traynor, A.; Barr, W.G. Induction of remission of severe and refractory rheumatoid arthritis by allogeneic mixed chimerism. Arthritis Rheum., 2004, 50(8), 2466-2470. doi: 10.1002/art.20451 PMID: 15334459
- Mesa, L.E.; López, J.G.; López Quiceno, L.; Barrios Arroyave, F.; Halpert, K.; Camacho, J.C. Safety and efficacy of mesenchymal stem cells therapy in the treatment of rheumatoid arthritis disease: A systematic review and meta-analysis of clinical trials. PLoS One, 2023, 18(7), e0284828. doi: 10.1371/journal.pone.0284828 PMID: 37498842
- Dowdell, A.S.; Colgan, S.P. Metabolic hostmicrobiota interactions in autophagy and the pathogenesis of inflammatory bowel disease (IBD). Pharmaceuticals, 2021, 14(8), 708. doi: 10.3390/ph14080708 PMID: 34451805
- Kobayashi, T.; Siegmund, B.; Le Berre, C.; Wei, S.C.; Ferrante, M.; Shen, B.; Bernstein, C.N.; Danese, S.; Peyrin-Biroulet, L.; Hibi, T. Ulcerative colitis. Nat. Rev. Dis. Primers, 2020, 6(1), 74. doi: 10.1038/s41572-020-0205-x PMID: 32913180
- Girish, N.; Liu, C.Y.; Gadeock, S.; Gomez, M.L.; Huang, Y.; Sharifkhodaei, Z.; Washington, M.K.; Polk, D.B. Persistence of Lgr5+ colonic epithelial stem cells in mouse models of inflammatory bowel disease. Am. J. Physiol. Gastrointest. Liver Physiol., 2021, 321(3), G308-G324. doi: 10.1152/ajpgi.00248.2020 PMID: 34260310
- Grim, C.; Noble, R.; Uribe, G.; Khanipov, K.; Johnson, P.; Koltun, W.A.; Watts, T.; Fofanov, Y.; Yochum, G.S.; Powell, D.W.; Beswick, E.J.; Pinchuk, I.V. Impairment of tissue-resident mesenchymal stem cells in chronic ulcerative colitis and crohns disease. J. Crohns Colitis, 2021, 15(8), 1362-1375. doi: 10.1093/ecco-jcc/jjab001 PMID: 33506258
- Qi, L.; Wu, J.; Zhu, S.; Wang, X.; Lv, X.; Liu, C.; Liu, Y.J.; Chen, J. Mesenchymal stem cells alleviate inflammatory bowel disease via tr1 cells. Stem Cell Rev. Rep., 2022, 18(7), 2444-2457. doi: 10.1007/s12015-022-10353-9 PMID: 35274217
- Gu, W.; Wang, H.; Huang, X.; Kraiczy, J.; Singh, P.N.P.; Ng, C.; Dagdeviren, S.; Houghton, S.; Pellon-Cardenas, O.; Lan, Y.; Nie, Y.; Zhang, J.; Banerjee, K.K.; Onufer, E.J.; Warner, B.W.; Spence, J.; Scherl, E.; Rafii, S.; Lee, R.T.; Verzi, M.P.; Redmond, D.; Longman, R.; Helin, K.; Shivdasani, R.A.; Zhou, Q. SATB2 preserves colon stem cell identity and mediates ileum-colon conversion via enhancer remodeling. Cell Stem Cell, 2022, 29(1), 101-115.e10. doi: 10.1016/j.stem.2021.09.004 PMID: 34582804
- Xu, J.; Wang, X.; Chen, J.; Chen, S.; Li, Z.; Liu, H.; Bai, Y.; Zhi, F. Embryonic stem cell-derived mesenchymal stem cells promote colon epithelial integrity and regeneration by elevating circulating IGF-1 in colitis mice. Theranostics, 2020, 10(26), 12204-12222. doi: 10.7150/thno.47683 PMID: 33204338
- Yan, Y.; Zhao, N.; He, X.; Guo, H.; Zhang, Z.; Liu, T. Mesenchymal stem cell expression of interleukin-35 protects against ulcerative colitis by suppressing mucosal immune responses. Cytotherapy, 2018, 20(7), 911-918. doi: 10.1016/j.jcyt.2018.05.004 PMID: 29907361
- Yang, S.; Liang, X.; Song, J.; Li, C.; Liu, A.; Luo, Y.; Ma, H.; Tan, Y.; Zhang, X. A novel therapeutic approach for inflammatory bowel disease by exosomes derived from human umbilical cord mesenchymal stem cells to repair intestinal barrier via TSG-6. Stem Cell Res. Ther., 2021, 12(1), 315. doi: 10.1186/s13287-021-02404-8 PMID: 34051868
- Yu, H.; Yang, X.; Xiao, X.; Xu, M.; Yang, Y.; Xue, C.; Li, X.; Wang, S.; Zhao, R.C. Human adipose mesenchymal stem cell-derived exosomes protect mice from dss-induced inflammatory bowel disease by promoting intestinal-stem-cell and epithelial regeneration. Aging Dis., 2021, 12(6), 1423-1437. doi: 10.14336/AD.2021.0601 PMID: 34527419
- Colombo, F.; Cammarata, F.; Baldi, C.; Rizzetto, F.; Bondurri, A.; Carmagnola, S.; Gridavilla, D.; Maconi, G.; Ardizzone, S.; Danelli, P. Stem cell injection for complex refractory perianal fistulas in crohns disease: A single center initial experience. Front. Surg., 2022, 9, 834870. doi: 10.3389/fsurg.2022.834870 PMID: 35198598
- Visweswaran, M.; Hendrawan, K.; Massey, J.C.; Khoo, M.L.; Ford, C.D.; Zaunders, J.J.; Withers, B.; Sutton, I.J.; Ma, D.D.F.; Moore, J.J. Sustained immunotolerance in multiple sclerosis after stem cell transplant. Ann. Clin. Transl. Neurol., 2022, 9(2), 206-220. doi: 10.1002/acn3.51510 PMID: 35106961
- Yuan, S.; Xiong, Y.; Larsson, S.C. An atlas on risk factors for multiple sclerosis: A Mendelian randomization study. J. Neurol., 2021, 268(1), 114-124. doi: 10.1007/s00415-020-10119-8 PMID: 32728946
- Attia, M.S.; Ewida, H.A.; Abdel Hafez, M.A.; El-Maraghy, S.A.; El- Sawalhi, M.M. Altered Lnc-EGFR, SNHG1, and LincRNA-Cox2 profiles in patients with relapsing-remitting multiple sclerosis: Impact on disease activity and progression. Diagnostics, 2023, 13(8), 1448. doi: 10.3390/diagnostics13081448 PMID: 37189549
- Shaker, O.G.; Mahmoud, R.H.; Abdelaleem, O.O.; Ibrahem, E.G.; Mohamed, A.A.; Zaki, O.M.; Abdelghaffar, N.K.; Ahmed, T.I.; Hemeda, N.F.; Ahmed, N.A.; Mansour, D.F. LncRNAs, MALAT1 and lnc-DC as potential biomarkers for multiple sclerosis diagnosis. Biosci. Rep., 2019, 39(1), BSR20181335. doi: 10.1042/BSR20181335 PMID: 30514825
- Probst, Y.; Mowbray, E.; Svensen, E.; Thompson, K. A systematic review of the impact of dietary sodium on autoimmunity and inflammation related to multiple sclerosis. Adv. Nutr., 2019, 10(5), 902-910. doi: 10.1093/advances/nmz032 PMID: 31079157
- Burt, R.K.; Han, X.; Quigley, K.; Helenowski, I.B.; Balabanov, R. Real- world application of autologous hematopoietic stem cell transplantation in 507 patients with multiple sclerosis. J. Neurol., 2022, 269(5), 2513-2526. doi: 10.1007/s00415-021-10820-2 PMID: 34633525
- Genchi, A.; Brambilla, E.; Sangalli, F.; Radaelli, M.; Bacigaluppi, M.; Furlan, R.; Andolfo, A.; Drago, D.; Magagnotti, C.; Scotti, G.M.; Greco, R.; Vezzulli, P.; Ottoboni, L.; Bonopane, M.; Capilupo, D.; Ruffini, F.; Belotti, D.; Cabiati, B.; Cesana, S.; Matera, G.; Leocani, L.; Martinelli, V.; Moiola, L.; Vago, L.; Panina-Bordignon, P.; Falini, A.; Ciceri, F.; Uglietti, A.; Sormani, M.P.; Comi, G.; Battaglia, M.A.; Rocca, M.A.; Storelli, L.; Pagani, E.; Gaipa, G.; Martino, G. Neural stem cell transplantation in patients with progressive multiple sclerosis: an open-label, phase 1 study. Nat. Med., 2023, 29(1), 75-85. doi: 10.1038/s41591-022-02097-3 PMID: 36624312
- Nabizadeh, F.; Pirahesh, K.; Rafiei, N.; Afrashteh, F.; Ahmadabad, M.A.; Zabeti, A.; Mirmosayyeb, O. Autologous hematopoietic stem-cell transplantation in multiple sclerosis: A systematic review and meta-analysis. Neurol. Ther., 2022, 11(4), 1553-1569. doi: 10.1007/s40120-022-00389-x PMID: 35902484
- Karnell, F.G.; Lin, D.; Motley, S.; Duhen, T.; Lim, N.; Campbell, D.J.; Turka, L.A.; Maecker, H.T.; Harris, K.M. Reconstitution of immune cell populations in multiple sclerosis patients after autologous stem cell transplantation. Clin. Exp. Immunol., 2017, 189(3), 268-278. doi: 10.1111/cei.12985 PMID: 28498568
- Darlington, P.J.; Stopnicki, B.; Touil, T.; Doucet, J.S.; Fawaz, L.; Roberts, M.E.; Boivin, M.N.; Arbour, N.; Freedman, M.S.; Atkins, H.L.; Bar-Or, A. Natural killer cells regulate Th17 cells after autologous hematopoietic stem cell transplantation for relapsing remitting multiple sclerosis. Front. Immunol., 2018, 9, 834. doi: 10.3389/fimmu.2018.00834 PMID: 29867923
- Vaivade, A.; Wiberg, A.; Khoonsari, P.E.; Carlsson, H.; Herman, S.; Al-Grety, A.; Freyhult, E.; Olsson-Strömberg, U.; Burman, J.; Kultima, K. Autologous hematopoietic stem cell transplantation significantly alters circulating ceramides in peripheral blood of relapsing-remitting multiple sclerosis patients. Lipids Health Dis., 2023, 22(1), 97. doi: 10.1186/s12944-023-01863-7 PMID: 37420217
- Xun, C.; Deng, H.; Zhao, J.; Ge, L.; Hu, Z. Mesenchymal stromal cell extracellular vesicles for multiple sclerosis in preclinical rodent models: A meta-analysis. Front. Immunol., 2022, 13, 972247. doi: 10.3389/fimmu.2022.972247 PMID: 36405749
- Rajan, T.S.; Giacoppo, S.; Diomede, F.; Ballerini, P.; Paolantonio, M.; Marchisio, M.; Piattelli, A.; Bramanti, P.; Mazzon, E.; Trubiani, O. The secretome of periodontal ligament stem cells from MS patients protects against EAE. Sci. Rep., 2016, 6(1), 38743. doi: 10.1038/srep38743 PMID: 27924938
- Li, Z.; Liu, F.; He, X.; Yang, X.; Shan, F.; Feng, J. Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. Int. Immunopharmacol., 2019, 67, 268-280. doi: 10.1016/j.intimp.2018.12.001 PMID: 30572251
- Riazifar, M.; Mohammadi, M.R.; Pone, E.J.; Yeri, A.; Lässer, C.; Segaliny, A.I.; McIntyre, L.L.; Shelke, G.V.; Hutchins, E.; Hamamoto, A.; Calle, E.N.; Crescitelli, R.; Liao, W.; Pham, V.; Yin, Y.; Jayaraman, J.; Lakey, J.R.T.; Walsh, C.M.; Van Keuren-Jensen, K.; Lotvall, J.; Zhao, W. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano, 2019, 13(6), 6670-6688. doi: 10.1021/acsnano.9b01004 PMID: 31117376
- Kvistad, C.E.; Kråkenes, T.; Gjerde, C.; Mustafa, K.; Rekand, T.; Bø, L. Safety and clinical efficacy of mesenchymal stem cell treatment in traumatic spinal cord injury, multiple sclerosis and ischemic stroke a systematic review and meta-analysis. Front. Neurol., 2022, 13, 891514. doi: 10.3389/fneur.2022.891514 PMID: 35711260
- Rajkumar, V.; Levine, S.N. Latent autoimmune diabetes. In: In: StatPearls. edn. Treasure Island (FL) with ineligible companies. Disclosure: Steven Levine declares no relevant financial relationships with ineligible companies; StatPearls Publishing, 2023.
- Lucier, J.; Weinstock, R.S. Type 1 Diabetes. In: StatPearls. edn. Treasure Island (FL) ineligible companies. Disclosure: Ruth Weinstock declares no relevant financial relationships with ineligible companies; StatPearls Publishing, 2023.
- McVoy, M.; Hardin, H.; Fulchiero, E.; Caforio, K.; Briggs, F.; Neudecker, M.; Sajatovic, M. Mental health comorbidity and youth onset type 2 diabetes: A systematic review of the literature. Int. J. Psychiatry Med., 2023, 58(1), 37-55. doi: 10.1177/00912174211067335 PMID: 35026126
- Gearty, S.V.; Dündar, F.; Zumbo, P.; Espinosa-Carrasco, G.; Shakiba, M.; Sanchez-Rivera, F.J.; Socci, N.D.; Trivedi, P.; Lowe, S.W.; Lauer, P.; Mohibullah, N.; Viale, A.; DiLorenzo, T.P.; Betel, D.; Schietinger, A. An autoimmune stem-like CD8 T cell population drives type 1 diabetes. Nature, 2022, 602(7895), 156-161. doi: 10.1038/s41586-021-04248-x PMID: 34847567
- Wang, R.R.; Qiu, X.; Pan, R.; Fu, H.; Zhang, Z.; Wang, Q.; Chen, H.; Wu, Q.Q.; Pan, X.; Zhou, Y.; Shan, P.; Wang, S.; Guo, G.; Zheng, M.; Zhu, L.; Meng, Z.X. Dietary intervention preserves β cell function in mice through CTCF-mediated transcriptional reprogramming. J. Exp. Med., 2022, 219(7), e20211779. doi: 10.1084/jem.20211779 PMID: 35652891
- Memon, B.; Abdelalim, E.M. Stem cell therapy for diabetes: Beta cells versus pancreatic progenitors. Cells, 2020, 9(2), 283. doi: 10.3390/cells9020283 PMID: 31979403
- Shapiro, A.M.J.; Thompson, D.; Donner, T.W.; Bellin, M.D.; Hsueh, W.; Pettus, J.; Wilensky, J.; Daniels, M.; Wang, R.M.; Brandon, E.P.; Jaiman, M.S.; Kroon, E.J.; DAmour, K.A.; Foyt, H.L. Insulin expression and C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device. Cell Rep. Med., 2021, 2(12), 100466. doi: 10.1016/j.xcrm.2021.100466 PMID: 35028608
- Salib, A.; Cayabyab, F.; Yoshihara, E. Stem Cell-Derived Islets for Type 2 Diabetes. Int. J. Mol. Sci., 2022, 23(9), 5099. doi: 10.3390/ijms23095099 PMID: 35563490
- Leavens, K.F.; Alvarez-Dominguez, J.R.; Vo, L.T.; Russ, H.A.; Parent, A.V. Stem cell-based multi-tissue platforms to model human autoimmune diabetes. Mol. Metab., 2022, 66, 101610. doi: 10.1016/j.molmet.2022.101610 PMID: 36209784
- Yang, J.; Chen, Z.; Pan, D.; Li, H.; Shen, J. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. Int. J. Nanomedicine, 2020, 15, 5911-5926. doi: 10.2147/IJN.S249129 PMID: 32848396
- Hu, N.; Cai, Z.; Jiang, X.; Wang, C.; Tang, T.; Xu, T.; Chen, H.; Li, X.; Du, X.; Cui, W. Hypoxia-pretreated ADSC-derived exosome-embedded hydrogels promote angiogenesis and accelerate diabetic wound healing. Acta Biomater., 2023, 157, 175-186. doi: 10.1016/j.actbio.2022.11.057 PMID: 36503078
- Song, J.; Liu, J.; Cui, C.; Hu, H.; Zang, N.; Yang, M.; Yang, J.; Zou, Y.; Li, J.; Wang, L.; He, Q.; Guo, X.; Zhao, R.; Yan, F.; Liu, F.; Hou, X.; Sun, Z.; Chen, L. Mesenchymal stromal cells ameliorate diabetes-induced muscle atrophy through exosomes by enhancing AMPK/ULK1-mediated autophagy. J. Cachexia Sarcopenia Muscle, 2023, 14(2), 915-929. doi: 10.1002/jcsm.13177 PMID: 36708027
- Wang, Y.; Liu, J.; Wang, H.; Lv, S.; Liu, Q.; Li, S.; Yang, X.; Liu, G. Mesenchymal stem cell-derived exosomes ameliorate diabetic kidney disease through the NLRP3 signaling pathway. Stem Cells, 2023, 41(4), 368-383. doi: 10.1093/stmcls/sxad010 PMID: 36682034
- Lv, J.; Hao, Y.N.; Wang, X.P.; Lu, W.H.; Xie, L.Y.; Niu, D. Bone marrow mesenchymal stem cell-derived exosomal miR-30e-5p ameliorates high-glucose induced renal proximal tubular cell pyroptosis by inhibiting ELAVL1. Ren. Fail., 2023, 45(1), 2177082. doi: 10.1080/0886022X.2023.2177082 PMID: 36794663
- Yang, H.; Zhang, Y.; Du, Z.; Wu, T.; Yang, C. Hair follicle mesenchymal stem cell exosomal lncRNA H19 inhibited NLRP3 pyroptosis to promote diabetic mouse skin wound healing. Aging, 2023, 15(3), 791-809. doi: 10.18632/aging.204513 PMID: 36787444
- Ju, Y.; Hu, Y.; Yang, P.; Xie, X.; Fang, B. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Mater. Today Bio, 2023, 18, 100522. doi: 10.1016/j.mtbio.2022.100522 PMID: 36593913
- Ge, L.; Wang, K.; Lin, H.; Tao, E.; Xia, W.; Wang, F.; Mao, C.; Feng, Y. Engineered exosomes derived from miR-132-overexpresssing adipose stem cells promoted diabetic wound healing and skin reconstruction. Front. Bioeng. Biotechnol., 2023, 11, 1129538. doi: 10.3389/fbioe.2023.1129538 PMID: 36937759
- Lian, X.F.; Lu, D.H.; Liu, H.L.; Liu, Y.J.; Han, X.Q.; Yang, Y.; Lin, Y.; Zeng, Q.X.; Huang, Z.J.; Xie, F.; Huang, C.H.; Wu, H.M.; Long, A.M.; Deng, L.P.; Zhang, F. Effectiveness and safety of human umbilical cord-mesenchymal stem cells for treating type 2 diabetes mellitus. World J. Diabetes, 2022, 13(10), 877-887. doi: 10.4239/wjd.v13.i10.877 PMID: 36312002
- Lian, X.F.; Lu, D.H.; Liu, H.L.; Liu, Y.J.; Yang, Y.; Lin, Y.; Xie, F.; Huang, C.H.; Wu, H.M.; Long, A.M.; Hui, C.J.; Shi, Y.; Chen, Y.; Gao, Y.F.; Zhang, F. Safety evaluation of human umbilical cord-mesenchymal stem cells in type 2 diabetes mellitus treatment: A phase 2 clinical trial. World J. Clin. Cases, 2023, 11(21), 5083-5096. doi: 10.12998/wjcc.v11.i21.5083 PMID: 37583846
- Yu, X.; Graner, M.; Kennedy, P.G.E.; Liu, Y. The role of antibodies in the pathogenesis of multiple sclerosis. Front. Neurol., 2020, 11, 533388. doi: 10.3389/fneur.2020.533388 PMID: 33192968
- Zhu, W.; He, X.; Cheng, K.; Zhang, L.; Chen, D.; Wang, X.; Qiu, G.; Cao, X.; Weng, X. Ankylosing spondylitis: Etiology, pathogenesis, and treatments. Bone Res., 2019, 7(1), 22. doi: 10.1038/s41413-019-0057-8 PMID: 31666997
- Shaikh, H.; Bakalov, V.; Shaikh, S.; Khattab, A.; Sadashiv, S. Coincident remission of ankylosing spondylitis after autologous stem cell transplantation for multiple myeloma. J. Oncol. Pharm. Pract., 2021, 27(1), 232-234. doi: 10.1177/1078155220927750 PMID: 32493162
- Ma, C.; Feng, Y.; Yang, L.; Wang, S.; Sun, X.; Tai, S.; Guan, X.; Wang, D.; Yu, Y. In vitro immunomodulatory effects of human umbilical cord-derived mesenchymal stem cells on peripheral blood cells from warm autoimmune hemolytic anemia patients. Acta Haematol., 2022, 145(1), 63-71. doi: 10.1159/000506759 PMID: 34284381
- Chihaby, N.; Orliaguet, M.; Le Pottier, L.; Pers, J.O.; Boisramé, S. Treatment of sjögrens syndrome with mesenchymal stem cells: A systematic review. Int. J. Mol. Sci., 2021, 22(19), 10474. doi: 10.3390/ijms221910474 PMID: 34638813
- Li, F.; Lu, J.; Shi, X.; Li, D.; Zhou, T.; Jiang, T.; Wang, S. Effect of adipose tissue-derived stem cells therapy on clinical response in patients with primary Sjogrens syndrome. Sci. Rep., 2023, 13(1), 13521. doi: 10.1038/s41598-023-40802-5 PMID: 37598237
- Zhang, L.; Ma, X.J.N.; Fei, Y.Y.; Han, H.T.; Xu, J.; Cheng, L.; Li, X. Stem cell therapy in liver regeneration: Focus on mesenchymal stem cells and induced pluripotent stem cells. Pharmacol. Ther., 2022, 232, 108004. doi: 10.1016/j.pharmthera.2021.108004 PMID: 34597754
- Mead, B.E.; Hattori, K.; Levy, L.; Imada, S.; Goto, N.; Vukovic, M.; Sze, D.; Kummerlowe, C.; Matute, J.D.; Duan, J.; Langer, R.; Blumberg, R.S.; Ordovas-Montanes, J.; Yilmaz, Ö.H.; Karp, J.M.; Shalek, A.K. Screening for modulators of the cellular composition of gut epithelia via organoid models of intestinal stem cell differentiation. Nat. Biomed. Eng., 2022, 6(4), 476-494. doi: 10.1038/s41551-022-00863-9 PMID: 35314801
- Lei, J.; Jiang, X.; Li, W.; Ren, J.; Wang, D.; Ji, Z.; Wu, Z.; Cheng, F.; Cai, Y.; Yu, Z.R.; Belmonte, J.C.I.; Li, C.; Liu, G.H.; Zhang, W.; Qu, J.; Wang, S. Exosomes from antler stem cells alleviate mesenchymal stem cell senescence and osteoarthritis. Protein Cell, 2022, 13(3), 220-226. doi: 10.1007/s13238-021-00860-9 PMID: 34342820
- Liu, C.; Hu, F.; Jiao, G.; Guo, Y.; Zhou, P.; Zhang, Y.; Zhang, Z.; Yi, J.; You, Y.; Li, Z.; Wang, H.; Zhang, X. Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization through the ROS-MAPK-NFκB P65 signaling pathway after spinal cord injury. J. Nanobiotechnology, 2022, 20(1), 65. doi: 10.1186/s12951-022-01273-4 PMID: 35109874
- Xu, X.; Liang, Y.; Li, X.; Ouyang, K.; Wang, M.; Cao, T.; Li, W.; Liu, J.; Xiong, J.; Li, B.; Xia, J.; Wang, D.; Duan, L. Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration. Biomaterials, 2021, 269, 120539. doi: 10.1016/j.biomaterials.2020.120539 PMID: 33243424
- Ma, L.; Wei, J.; Zeng, Y.; Liu, J.; Xiao, E.; Kang, Y.; Kang, Y. Mesenchymal stem cell-originated exosomal circDIDO1 suppresses hepatic stellate cell activation by miR-141-3p/PTEN/AKT pathway in human liver fibrosis. Drug Deliv., 2022, 29(1), 440-453. doi: 10.1080/10717544.2022.2030428 PMID: 35099348
- Minnie, S.A.; Waltner, O.G.; Ensbey, K.S.; Olver, S.D.; Collinge, A.D.; Sester, D.P.; Schmidt, C.R.; Legg, S.R.W.; Takahashi, S.; Nemychenkov, N.S.; Sekiguchi, T.; Driessens, G.; Zhang, P.; Koyama, M.; Spencer, A.; Holmberg, L.A.; Furlan, S.N.; Varelias, A.; Hill, G.R. TIGIT inhibition and lenalidomide synergistically promote antimyeloma immune responses after stem cell transplantation in mice. J. Clin. Invest., 2023, 133(4), e157907. doi: 10.1172/JCI157907 PMID: 36512425
- Liuyang, S.; Wang, G.; Wang, Y.; He, H.; Lyu, Y.; Cheng, L.; Yang, Z.; Guan, J.; Fu, Y.; Zhu, J.; Zhong, X.; Sun, S.; Li, C.; Wang, J.; Deng, H. Highly efficient and rapid generation of human pluripotent stem cells by chemical reprogramming. Cell Stem Cell, 2023, 30(4), 450-459.e9. doi: 10.1016/j.stem.2023.02.008 PMID: 36944335
- Hendrawan, K.; Khoo, M.L.M.; Visweswaran, M.; Massey, J.C.; Withers, B.; Sutton, I.; Ma, D.D.F.; Moore, J.J. Long-term suppression of circulating proinflammatory cytokines in multiple sclerosis patients following autologous haematopoietic stem cell transplantation. Front. Immunol., 2022, 12, 782935. doi: 10.3389/fimmu.2021.782935 PMID: 35126353
- Motavalli, R.; Etemadi, J.; Soltani-Zangbar, M.S.; Ardalan, M.R.; Kahroba, H.; Roshangar, L.; Nouri, M.; Aghebati-Maleki, L.; Khiavi, F.M.; Abediazar, S.; Mehdizadeh, A.; Hojjat-Farsangi, M.; Mahmoodpoor, A.; Kafil, H.S.; Zolfaghari, M.; Ahmadian Heris, J.; Yousefi, M. Altered Th17/Treg ratio as a possible mechanism in pathogenesis of idiopathic membranous nephropathy. Cytokine, 2021, 141, 155452. doi: 10.1016/j.cyto.2021.155452 PMID: 33571932
- Cailleteau, A.; Maingon, P.; Choquet, S.; Bourdais, R.; Antoni, D.; Lioure, B.; Hulin, C.; Batard, S.; Llagostera, C.; Guimas, V.; Touzeau, C.; Moreau, P.; Mahé, M.A.; Supiot, S. Phase 1 study of the combination of escalated total marrow irradiation using helical tomotherapy and fixed high-dose melphalan (140 mg/m²) followed by autologous stem cell transplantation at first relapse in multiple myeloma. Int. J. Radiat. Oncol. Biol. Phys., 2023, 115(3), 677-685. doi: 10.1016/j.ijrobp.2022.09.069 PMID: 36174802
- Elkenani, M.; Mohamed, B.A. Murine embryonic stem cell culture, self-renewal, and differentiation. Methods Mol. Biol., 2021, 2520, 265-273. doi: 10.1007/7651_2021_447 PMID: 34724189
- Reinders, M.E.J.; Groeneweg, K.E.; Hendriks, S.H.; Bank, J.R.; Dreyer, G.J.; de Vries, A.P.J.; van Pel, M.; Roelofs, H.; Huurman, V.A.L.; Meij, P.; Moes, D.J.A.R.; Fibbe, W.E.; Claas, F.H.J.; Roelen, D.L.; van Kooten, C.; Kers, J.; Heidt, S.; Rabelink, T.J.; de Fijter, J.W. Autologous bone marrow-derived mesenchymal stromal cell therapy with early tacrolimus withdrawal: The randomized prospective, single-center, open-label TRITON study. Am. J. Transplant., 2021, 21(9), 3055-3065. doi: 10.1111/ajt.16528 PMID: 33565206
- Hawkins, F.J.; Suzuki, S.; Beermann, M.L.; Barillà, C.; Wang, R.; Villacorta-Martin, C.; Berical, A.; Jean, J.C.; Le Suer, J.; Matte, T.; Simone-Roach, C.; Tang, Y.; Schlaeger, T.M.; Crane, A.M.; Matthias, N.; Huang, S.X.L.; Randell, S.H.; Wu, J.; Spence, J.R.; Carraro, G.; Stripp, B.R.; Rab, A.; Sorsher, E.J.; Horani, A.; Brody, S.L.; Davis, B.R.; Kotton, D.N. Derivation of airway basal stem cells from human pluripotent stem cells. Cell Stem Cell, 2021, 28(1), 79-95.e8. doi: 10.1016/j.stem.2020.09.017 PMID: 33098807
- Tan, Q.; Xia, D.; Ying, X. miR-29a in exosomes from bone marrow mesenchymal stem cells inhibit fibrosis during endometrial repair of intrauterine adhesion. Int. J. Stem Cells, 2020, 13(3), 414-423. doi: 10.15283/ijsc20049 PMID: 33250449
- Xu, J.; Wang, W.; Wang, Y.; Zhu, Z.; Li, D.; Wang, T.; Liu, K. Progress in research on the role of exosomal miRNAs in the diagnosis and treatment of cardiovascular diseases. Front. Genet., 2022, 13, 929231. doi: 10.3389/fgene.2022.929231 PMID: 36267409
- Yang, H.; Xu, H.; Wang, Z.; Li, X.; Wang, P.; Cao, X.; Xu, Z.; Lv, D.; Rong, Y.; Chen, M.; Tang, B.; Hu, Z.; Deng, W.; Zhu, J. Analysis of miR-203a-3p/SOCS3- mediated induction of M2 macrophage polarization to promote diabetic wound healing based on epidermal stem cell-derived exosomes. Diabetes Res. Clin. Pract., 2023, 197, 110573. doi: 10.1016/j.diabres.2023.110573 PMID: 36764461
Supplementary files
