Fucoxanthin Enhances the Antifibrotic Potential of Placenta-derived Mesenchymal Stem Cells in a CCl4-induced Mouse Model of Liver
- Autores: Slautin V.1, Konyshev K.1, Gavrilov I.1, Beresneva O.1, Maklakova I.1, Grebnev D.1
-
Afiliações:
- Department of Pathophysiology, Ural State Medical University
- Edição: Volume 19, Nº 11 (2024)
- Páginas: 1484-1496
- Seção: Medicine
- URL: https://ruspoj.com/1574-888X/article/view/645594
- DOI: https://doi.org/10.2174/011574888X279940231206100902
- ID: 645594
Citar
Texto integral
Resumo
Background:The effectiveness of fucoxanthin (Fx) in liver diseases has been reported due to its anti-inflammatory and antifibrotic effects. Mesenchymal stem cells (MSCs)-based therapy has also been proposed as a promising strategy for liver fibrosis treatment. Recent studies have shown that the co-administration of MSCs and drugs demonstrates a pronounced effect on liver fibrosis.
Aim:This study aimed to determine the therapeutic potential of placenta-derived MSCs (PD-MSCs) in combination with Fx to treat liver fibrosis and evaluate their impact on the main links of liver fibrosis pathogenesis.
Methods:After PD-MSCs isolation and identification, outbred ICR/CD1 mice were divided into five groups: Control group, CCl4 group (CCl4), Fx group (CCl4+Fx), PD-MSCs group (CCl4+MSCs) and cotreatment group (CCl4+MSCs+Fx). Biochemical histopathological investigations were performed. Semiquantitative analysis of the alpha-smooth muscle actin (α-SMA+), matrix metalloproteinases (MMP-9+, MMP-13+), tissue inhibitor of matrix metalloproteinases-1 (TIMP-1+) areas, and the number of positive cells in them were studied by immunohistochemical staining. Transforming growth factor-beta (TGF-β), hepatic growth factor (HGF), procollagen-1 (COL1α1) in liver homogenate and proinflammatory cytokines in blood serum were determined using an enzyme immunoassay.
Results:Compared to the single treatment with PD-MSCs or Fx, their combined administration significantly reduced liver enzyme activity, the severity of liver fibrosis, the proinflammatory cytokine levels, TGF-β level, α-SMA+, TIMP-1+ areas and the number of positive cells in them, and increased HGF level, MMP-13+, and MMP-9+ areas.
Conclusion:Fx enhanced the therapeutic potential of PD-MSCs in CCl4-induced liver fibrosis, but more investigations are necessary to understand the mutual impact of PD-MSCs and Fx.
Sobre autores
Vasilii Slautin
Department of Pathophysiology, Ural State Medical University
Autor responsável pela correspondência
Email: info@benthamscience.net
Konstantin Konyshev
Department of Pathophysiology, Ural State Medical University
Email: info@benthamscience.net
Ilya Gavrilov
Department of Pathophysiology, Ural State Medical University
Email: info@benthamscience.net
Olga Beresneva
Department of Pathophysiology, Ural State Medical University
Email: info@benthamscience.net
Irina Maklakova
Department of Pathophysiology, Ural State Medical University
Email: info@benthamscience.net
Dmitry Grebnev
Department of Pathophysiology, Ural State Medical University
Email: info@benthamscience.net
Bibliografia
- Wang, J.; Chen, Z.; Sun, M.; Xu, H.; Gao, Y.; Liu, J.; Li, M. Characterization and therapeutic applications of mesenchymal stem cells for regenerative medicine. Tissue Cell, 2020, 64, 101330. doi: 10.1016/j.tice.2020.101330 PMID: 32473704
- Cardinale, V.; Lanthier, N.; Baptista, P.M.; Carpino, G.; Carnevale, G.; Orlando, G.; Angelico, R.; Manzia, T.M.; Schuppan, D.; Pinzani, M.; Alvaro, D.; Ciccocioppo, R.; Uygun, B.E. Cell transplantation-based regenerative medicine in liver diseases. Stem Cell Reports, 2023, 18(8), 1555-1572. doi: 10.1016/j.stemcr.2023.06.005 PMID: 37557073
- Mahjoor, M.; Fakouri, A.; Farokhi, S.; Nazari, H.; Afkhami, H.; Heidari, F. Regenerative potential of mesenchymal stromal cells in wound healing: unveiling the influence of normoxic and hypoxic environments. Front. Cell Dev. Biol., 2023, 11, 1245872. doi: 10.3389/fcell.2023.1245872 PMID: 37900276
- Lou, S.; Duan, Y.; Nie, H.; Cui, X.; Du, J.; Yao, Y. Mesenchymal stem cells: Biological characteristics and application in disease therapy. Biochimie, 2021, 185, 9-21. doi: 10.1016/j.biochi.2021.03.003 PMID: 33711361
- Liu, P.; Qian, Y.; Liu, X.; Zhu, X.; Zhang, X.; Lv, Y.; Xiang, J. Immunomodulatory role of mesenchymal stem cell therapy in liver fibrosis. Front. Immunol., 2023, 13, 1096402. doi: 10.3389/fimmu.2022.1096402 PMID: 36685534
- Liu, P.; Mao, Y.; Xie, Y.; Wei, J.; Yao, J. Stem cells for treatment of liver fibrosis/cirrhosis: Clinical progress and therapeutic potential. Stem Cell Res. Ther., 2022, 13(1), 356. doi: 10.1186/s13287-022-03041-5 PMID: 35883127
- Yao, L.; Hu, X.; Dai, K.; Yuan, M.; Liu, P.; Zhang, Q.; Jiang, Y. Mesenchymal stromal cells: Promising treatment for liver cirrhosis. Stem Cell Res. Ther., 2022, 13(1), 308. doi: 10.1186/s13287-022-03001-z PMID: 35841079
- Hu, X.; Ge, Q.; Zhang, Y.; Li, B.; Cheng, E.; Wang, Y.; Huang, Y. A review of the effect of exosomes from different cells on liver fibrosis. Biomed. Pharmacother., 2023, 161, 114415. doi: 10.1016/j.biopha.2023.114415 PMID: 36812711
- Jones, B.; Li, C.; Park, M.S.; Lerch, A.; Jacob, V.; Johnson, N.; Kuang, J.Q.; Dhall, S.; Sathyamoorthy, M. Comprehensive comparison of amnion stromal cells and chorion stromal cells by RNA-seq. Int. J. Mol. Sci., 2021, 22(4), 1901. doi: 10.3390/ijms22041901 PMID: 33672986
- Chen, L.; Merkhan, M.M.; Forsyth, N.R.; Wu, P. Chorionic and amniotic membrane-derived stem cells have distinct, and gestational diabetes mellitus independent, proliferative, differentiation, and immunomodulatory capacities. Stem Cell Res., 2019, 40, 101537. doi: 10.1016/j.scr.2019.101537 PMID: 31422237
- Jeon, Y.J.; Kim, J.; Cho, J.H.; Chung, H.M.; Chae, J.I. Comparative analysis of human mesenchymal stem cells derived from bone marrow, placenta, and adipose tissue as sources of cell therapy. J. Cell. Biochem., 2016, 117(5), 1112-1125. doi: 10.1002/jcb.25395 PMID: 26448537
- Zhang, Y.; Ravikumar, M.; Ling, L.; Nurcombe, V.; Cool, S.M. Age-related changes in the inflammatory status of human mesenchymal stem cells: implications for cell therapy. Stem Cell Reports, 2021, 16(4), 694-707. doi: 10.1016/j.stemcr.2021.01.021 PMID: 33636113
- Gao, Y.; Chi, Y.; Chen, Y.; Wang, W.; Li, H.; Zheng, W.; Zhu, P.; An, J.; Duan, Y.; Sun, T.; Liu, X.; Xue, F.; Liu, W.; Fu, R.; Han, Z.; Zhang, Y.; Yang, R.; Cheng, T.; Wei, J.; Zhang, L.; Zhang, X. Multi-omics analysis of human mesenchymal stem cells shows cell aging that alters immunomodulatory activity through the downregulation of PD-L1. Nat. Commun., 2023, 14(1), 4373. doi: 10.1038/s41467-023-39958-5 PMID: 37474525
- Torre, P.; Flores, A.I. Current status and future prospects of perinatal stem cells. Genes, 2020, 12(1), 6. doi: 10.3390/genes12010006 PMID: 33374593
- Yao, Q.; Chen, W.; Yu, Y.; Gao, F.; Zhou, J.; Wu, J.; Pan, Q.; Yang, J.; Zhou, L.; Yu, J.; Cao, H.; Li, L. Human placental mesenchymal stem cells relieve primary sclerosing cholangitis via upregulation of TGR5 in Mdr2 −/− mice and human intrahepatic cholangiocyte organoid models. Research, 2023, 6, 0207. doi: 10.34133/research.0207 PMID: 37600495
- Li, S.; Wang, J.; Jiang, B.; Jiang, J.; Luo, L.; Zheng, B.; Si, W. Mesenchymal stem cells derived from different perinatal tissues donated by same donors manifest variant performance on the acute liver failure model in mouse. Stem Cell Res. Ther., 2022, 13(1), 231. doi: 10.1186/s13287-022-02909-w PMID: 35659084
- Kim, S.H.; Kim, J.Y.; Park, S.Y.; Jeong, W.T.; Kim, J.M.; Bae, S.H.; Kim, G.J. Activation of the EGFR-PI3K- CaM pathway by PRL-1-overexpressing placenta-derived mesenchymal stem cells ameliorates liver cirrhosis via ER stress-dependent calcium. Stem Cell Res. Ther., 2021, 12(1), 551. doi: 10.1186/s13287-021-02616-y PMID: 34689832
- Na, J.; Song, J.; Kim, H.H.; Seok, J.; Kim, J.Y.; Jun, J.H.; Kim, G.J. Human placenta-derived mesenchymal stem cells trigger repair system in TAA-injured rat model via antioxidant effect. Aging, 2021, 13(1), 61-76. doi: 10.18632/aging.202348 PMID: 33406506
- Yao, Y.; Xia, Z.; Cheng, F.; Jang, Q.; He, J.; Pan, C.; Zhang, L.; Ye, Y.; Wang, Y.; Chen, S.; Su, D.; Su, X.; Cheng, L.; Shi, G.; Dai, L.; Deng, H. Human placental mesenchymal stem cells ameliorate liver fibrosis in mice by upregulation of Caveolin1 in hepatic stellate cells. Stem Cell Res. Ther., 2021, 12(1), 294. doi: 10.1186/s13287-021-02358-x PMID: 34016164
- Slautin, V.N.; Grebnev, D.Y.; Maklakova, I.Y.; Sazonov, S.V. Fucoxanthin exert dose-dependent antifibrotic and anti-inflammatory effects on CCl4-induced liver fibrosis. J. Nat. Med., 2023, 77(4), 953-963. doi: 10.1007/s11418-023-01723-9 PMID: 37391684
- Mumu, M.; Das, A.; Emran, T.B.; Mitra, S.; Islam, F.; Roy, A.; Karim, M.M.; Das, R.; Park, M.N.; Chandran, D.; Sharma, R.; Khandaker, M.U.; Idris, A.M.; Kim, B. Fucoxanthin: A promising phytochemical on diverse pharmacological targets. Front. Pharmacol., 2022, 13, 929442. doi: 10.3389/fphar.2022.929442 PMID: 35983376
- Bae, M.; Kim, M.B.; Park, Y.K.; Lee, J.Y. Health benefits of fucoxanthin in the prevention of chronic diseases. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2020, 1865(11), 158618. doi: 10.1016/j.bbalip.2020.158618 PMID: 31931174
- Li, N.; Gao, X.; Zheng, L.; Huang, Q.; Zeng, F.; Chen, H.; Farag, M.A.; Zhao, C. Advances in fucoxanthin chemistry and management of neurodegenerative diseases. Phytomedicine, 2022, 105, 154352. doi: 10.1016/j.phymed.2022.154352 PMID: 35917771
- Miyashita, K.; Hosokawa, M. Fucoxanthin in the management of obesity and its related disorders. J. Funct. Foods, 2017, 36, 195-202. doi: 10.1016/j.jff.2017.07.009
- Winarto, J.; Song, D.G.; Pan, C.H. The role of fucoxanthin in non-alcoholic fatty liver disease. Int. J. Mol. Sci., 2023, 24(9), 8203. doi: 10.3390/ijms24098203 PMID: 37175909
- Guan, B.; Chen, K.; Tong, Z.; Chen, L.; Chen, Q.; Su, J. Advances in fucoxanthin research for the prevention and treatment of inflammation-related diseases. Nutrients, 2022, 14(22), 4768. doi: 10.3390/nu14224768 PMID: 36432455
- Liu, M.; Li, W.; Chen, Y.; Wan, X.; Wang, J. Fucoxanthin: A promising compound for human inflammation-related diseases. Life Sci., 2020, 255, 117850. doi: 10.1016/j.lfs.2020.117850 PMID: 32470447
- Li, S.; Ren, X.; Wang, Y.; Hu, J.; Wu, H.; Song, S.; Yan, C. Fucoxanthin alleviates palmitate-induced inflammation in RAW 264.7 cells through improving lipid metabolism and attenuating mitochondrial dysfunction. Food Funct., 2020, 11(4), 3361-3370. doi: 10.1039/D0FO00442A PMID: 32232236
- Jeong, S.; Kim, M.B.; Baek, S.; Lee, J.; Lee, H.; Cao, B.; Kim, Y.; Cao, L.; Lee, S. Suppression of pro-inflammatory M1 polarization of LPS-stimulated RAW 264.7 macrophage cells by fucoxanthin-rich sargassum hemiphyllum. Mar. Drugs, 2023, 21(10), 533. doi: 10.3390/md21100533 PMID: 37888467
- Ben Ammar, R.; Zahra, H.A.; Abu Zahra, A.M.; Alfwuaires, M.; Abdulaziz Alamer, S.; Metwally, A.M.; Althnaian, T.A.; Al-Ramadan, S.Y. Protective effect of fucoxanthin on zearalenone-induced hepatic damage through Nrf2 mediated by PI3K/AKT signaling. Mar. Drugs, 2023, 21(7), 391. doi: 10.3390/md21070391 PMID: 37504922
- Kim, M.B.; Bae, M.; Hu, S.; Kang, H.; Park, Y.K.; Lee, J.Y. Fucoxanthin exerts anti-fibrogenic effects in hepatic stellate cells. Biochem. Biophys. Res. Commun., 2019, 513(3), 657-662. doi: 10.1016/j.bbrc.2019.04.052 PMID: 30982574
- Li, Y.; Kim, M.B.; Park, Y.K.; Lee, J.Y. Fucoxanthin metabolites exert anti-fibrogenic and antioxidant effects in hepatic stellate cells. J. Agricult. Food Res., 2021, 6, 100245. doi: 10.1016/j.jafr.2021.100245
- Takatani, N.; Kono, Y.; Beppu, F.; Okamatsu-Ogura, Y.; Yamano, Y.; Miyashita, K.; Hosokawa, M. Fucoxanthin inhibits hepatic oxidative stress, inflammation, and fibrosis in diet-induced nonalcoholic steatohepatitis model mice. Biochem. Biophys. Res. Commun., 2020, 528(2), 305-310. doi: 10.1016/j.bbrc.2020.05.050 PMID: 32475638
- Nan, Y.; Su, H.; Lian, X.; Wu, J.; Liu, S.; Chen, P.; Liu, S. Pathogenesis of liver fibrosis and its TCM therapeutic perspectives. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-12. doi: 10.1155/2022/5325431 PMID: 35529927
- Zhang, C.Y.; Liu, S.; Yang, M. Treatment of liver fibrosis: Past, current, and future. World J. Hepatol., 2023, 15(6), 755-774. doi: 10.4254/wjh.v15.i6.755 PMID: 37397931
- Liu, Y.B.; Chen, M.K. Epidemiology of liver cirrhosis and associated complications: Current knowledge and future directions. World J. Gastroenterol., 2022, 28(41), 5910-5930. doi: 10.3748/wjg.v28.i41.5910 PMID: 36405106
- Zanetto, A.; Shalaby, S.; Gambato, M.; Germani, G.; Senzolo, M.; Bizzaro, D.; Russo, F.P.; Burra, P. New indications for liver transplantation. J. Clin. Med., 2021, 10(17), 3867. doi: 10.3390/jcm10173867 PMID: 34501314
- Ngu, N.L.Y.; Flanagan, E.; Bell, S.; Le, S.T. Acute-on-chronic liver failure: Controversies and consensus. World J. Gastroenterol., 2023, 29(2), 232-240. doi: 10.3748/wjg.v29.i2.232 PMID: 36687118
- Karvellas, C.J.; Francoz, C.; Weiss, E. Liver transplantation in acute-on-chronic liver failure. Transplantation, 2021, 105(7), 1471-1481. doi: 10.1097/TP.0000000000003550 PMID: 33208692
- Huang, Q.; Yang, Y.; Luo, C.; Wen, Y.; Liu, R.; Li, S.; Chen, T.; Sun, H.; Tang, L. An efficient protocol to generate placental chorionic plate-derived mesenchymal stem cells with superior proliferative and immunomodulatory properties. Stem Cell Res. Ther., 2019, 10(1), 301. doi: 10.1186/s13287-019-1405-8 PMID: 31623677
- Nallagangula, K.S.; Nagaraj, S.K.; Venkataswamy, L.; Chandrappa, M. Liver fibrosis: A compilation on the biomarkers status and their significance during disease progression. Future Sci. OA, 2018, 4(1), FSO250. doi: 10.4155/fsoa-2017-0083 PMID: 29255622
- Sharma, P. Value of liver function tests in cirrhosis. J. Clin. Exp. Hepatol., 2022, 12(3), 948-964. doi: 10.1016/j.jceh.2021.11.004 PMID: 35677506
- Ong, C.H.; Tham, C.L.; Harith, H.H.; Firdaus, N.; Israf, D.A. TGF-β-induced fibrosis: A review on the underlying mechanism and potential therapeutic strategies. Eur. J. Pharmacol., 2021, 911, 174510. doi: 10.1016/j.ejphar.2021.174510 PMID: 34560077
- Gough, N.R.; Xiang, X.; Mishra, L. TGF-β signaling in liver, pancreas, and gastrointestinal diseases and cancer. Gastroenterology, 2021, 161(2), 434-452.e15. doi: 10.1053/j.gastro.2021.04.064 PMID: 33940008
- Lee, Y-S.; Seki, E. In vivo and in vitro models to study liver fibrosis: Mechanisms and limitations. Cell Mol. Gastroenterol. Hepatol., 2023, 100788. doi: 10.1016/j.jcmgh.2023.05.010
- Wu, S.; Wang, X.; Xing, W.; Li, F.; Liang, M.; Li, K.; He, Y.; Wang, J. An update on animal models of liver fibrosis. Front. Med., 2023, 10, 1160053. doi: 10.3389/fmed.2023.1160053 PMID: 37035335
- Akdis, M.; Aab, A.; Altunbulakli, C.; Azkur, K.; Costa, R.A.; Crameri, R.; Duan, S.; Eiwegger, T.; Eljaszewicz, A.; Ferstl, R.; Frei, R.; Garbani, M.; Globinska, A.; Hess, L.; Huitema, C.; Kubo, T.; Komlosi, Z.; Konieczna, P.; Kovacs, N.; Kucuksezer, U.C.; Meyer, N.; Morita, H.; Olzhausen, J.; OMahony, L.; Pezer, M.; Prati, M.; Rebane, A.; Rhyner, C.; Rinaldi, A.; Sokolowska, M.; Stanic, B.; Sugita, K.; Treis, A.; van de Veen, W.; Wanke, K.; Wawrzyniak, M.; Wawrzyniak, P.; Wirz, O.F.; Zakzuk, J.S.; Akdis, C.A. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol., 2016, 138(4), 984-1010. doi: 10.1016/j.jaci.2016.06.033 PMID: 27577879
- Sabir U, Gu HM, Zhang DW. Extracellular matrix turnover: Phytochemicals target and modulate the dual role of matrix metalloproteinases (MMPs) in liver fibrosis. Phytother Res 2023; 37(11): 4932-4962. doi: 10.1002/ptr.7959
- Khurana, A.; Sayed, N.; Allawadhi, P.; Weiskirchen, R. Its all about the spaces between cells: Role of extracellular matrix in liver fibrosis. Ann. Transl. Med., 2021, 9(8), 728-728. doi: 10.21037/atm-20-2948 PMID: 33987426
- Molière, S.; Jaulin, A.; Tomasetto, C.L.; Dali-Youcef, N. Roles of matrix metalloproteinases and their natural inhibitors in metabolism: Insights into health and disease. Int. J. Mol. Sci., 2023, 24(13), 10649. doi: 10.3390/ijms241310649 PMID: 37445827
- Lu, W.; Qu, J.; Yan, L.; Tang, X.; Wang, X.; Ye, A.; Zou, Z.; Li, L.; Ye, J.; Zhou, L. Efficacy and safety of mesenchymal stem cell therapy in liver cirrhosis: A systematic review and meta- analysis. Stem Cell Res. Ther., 2023, 14(1), 301. doi: 10.1186/s13287-023-03518-x PMID: 37864199
- Pang, Q.M.; Deng, K.Q.; Zhang, M.; Wu, X.C.; Yang, R.L.; Fu, S.P.; Lin, F.Q.; Zhang, Q.; Ao, J.; Zhang, T. Multiple strategies enhance the efficacy of MSCs transplantation for spinal cord injury. Biomed. Pharmacother., 2023, 157, 114011. doi: 10.1016/j.biopha.2022.114011 PMID: 36410123
- García-Bernal, D.; García-Arranz, M.; Yáñez, R.M.; Hervás-Salcedo, R.; Cortés, A.; Fernández-García, M.; Hernando-Rodríguez, M.; Quintana-Bustamante, Ó.; Bueren, J.A.; García-Olmo, D.; Moraleda, J.M.; Sego via, J.C.; Zapata, A.G. The current status of mesenchymal stromal cells: Controversies, unresolved issues and some promising solutions to improve their therapeutic efficacy. Front. Cell Dev. Biol., 2021, 9, 650664. doi: 10.3389/fcell.2021.650664 PMID: 33796536
- Yuan, M.; Hu, X.; Yao, L.; Jiang, Y.; Li, L. Mesenchymal stem cell homing to improve therapeutic efficacy in liver disease. Stem Cell Res. Ther., 2022, 13(1), 179. doi: 10.1186/s13287-022-02858-4 PMID: 35505419
- Fathy, M.; Okabe, M.; Saad Eldien, H.M.; Yoshida, T. AT-MSCs antifibrotic activity is improved by eugenol through modulation of tgf-β/smad signaling pathway in rats. Molecules, 2020, 25(2), 348. doi: 10.3390/molecules25020348 PMID: 31952158
- Jang, Y.O.; Kim, S.H.; Cho, M.Y.; Kim, K.S.; Park, K.S.; Cha, S.K.; Kim, M.Y.; Chang, S.J.; Baik, S.K. Synergistic effects of simvastatin and bone marrow-derived mesenchymal stem cells on hepatic fibrosis. Biochem. Biophys. Res. Commun., 2018, 497(1), 264-271. doi: 10.1016/j.bbrc.2018.02.067 PMID: 29428718
- Iwasawa, T.; Nojiri, S.; Tsuchiya, A.; Takeuchi, S.; Watanabe, T.; Ogawa, M.; Motegi, S.; Sato, T.; Kumagai, M.; Nakaya, T.; Ohbuchi, K.; Nahata, M.; Fujitsuka, N.; Takamura, M.; Terai, S. Combination therapy of Juzentaihoto and mesenchymal stem cells attenuates liver damage and regresses fibrosis in mice. Regen. Ther., 2021, 18, 231-241. doi: 10.1016/j.reth.2021.07.002 PMID: 34409135
- Mazhari, S.; Gitiara, A.; Baghaei, K.; Hatami, B.; Rad, R.E.; Asadirad, A.; Joharchi, K.; Tokhanbigli, S.; Hashemi, S.M.; Łos, M.J.; Aghdaei, H.A.; Zali, M.R.; Ghavami, S. Therapeutic potential of bone marrow-derived mesenchymal stem cells and imatinib in a rat model of liver fibrosis. Eur. J. Pharmacol., 2020, 882, 173263. doi: 10.1016/j.ejphar.2020.173263 PMID: 32535098
- Rafiq, H.; Ayaz, M.; Khan, H.A.; Iqbal, M.; Quraish, S.; Afridi, S.G.; Khan, A.; Khan, B.; Sher, A.; Siraj, F.; Shams, S. Therapeutic potential of stem cell and melatonin on the reduction of CCl4-induced liver fibrosis in experimental mice model. Braz. J. Biol., 2024, 84, e253061. doi: 10.1590/1519-6984.253061 PMID: 35293541
- Baghaei, K.; Mazhari, S.; Tokhanbigli, S.; Parsamanesh, G.; Alavifard, H.; Schaafsma, D.; Ghavami, S. Therapeutic potential of targeting regulatory mechanisms of hepatic stellate cell activation in liver fibrosis. Drug Discov. Today, 2022, 27(4), 1044-1061. doi: 10.1016/j.drudis.2021.12.012 PMID: 34952225
- Higashi, T.; Friedman, S.L.; Hoshida, Y. Hepatic stellate cells as key target in liver fibrosis. Adv. Drug Deliv. Rev., 2017, 121, 27-42. doi: 10.1016/j.addr.2017.05.007 PMID: 28506744
- Guo, P.C.; Zuo, J.; Huang, K.K.; Lai, G.Y.; Zhang, X.; An, J.; Li, J.X.; Li, L.; Wu, L.; Lin, Y.T.; Wang, D.Y.; Xu, J.S.; Hao, S.J.; Wang, Y.; Li, R.H.; Ma, W.; Song, Y.M.; Liu, C.; Liu, C.Y.; Dai, Z.; Xu, Y.; Sharma, A.D.; Ott, M.; Ou-Yang, Q.; Huo, F.; Fan, R.; Li, Y.Y.; Hou, J.L.; Volpe, G.; Liu, L.Q.; Esteban, M.A.; Lai, Y.W. Cell atlas of CCl 4-induced progressive liver fibrosis reveals stage-specific responses. Zool. Res., 2023, 44(3), 451-466. doi: 10.24272/j.issn.2095-8137.2023.031 PMID: 36994536
- Gandhi, C.R. Hepatic stellate cell activation and pro-fibrogenic signals. J. Hepatol., 2017, 67(5), 1104-1105. doi: 10.1016/j.jhep.2017.06.001 PMID: 28939135
- Gupta, G; Khadem, F; Uzonna, JE Role of hepatic stellate cell (HSC)-derived cytokines in hepatic inflammation and immunity. Cytokine, 2019, 124, 1. doi: 10.1016/j.cyto.2018.09.004
- Martinez-Castillo, M.; Hernandez-Barragan, A.; Flores-Vasconcelos, I.; Galicia-Moreno, M.; Rosique-Oramas, D.; Perez-Hernandez, J.L.; Higuera-De la Tijera, F.; Montalvo-Jave, E.E.; Torre-Delgadillo, A.; Cordero-Perez, P.; Muñoz-Espinosa, L.; Kershenobich, D.; Gutierrez-Reyes, G. Production and activity of matrix metalloproteinases during liver fibrosis progression of chronic hepatitis C patients. World J. Hepatol., 2021, 13(2), 218-232. doi: 10.4254/wjh.v13.i2.218 PMID: 33708351
- Geervliet, E.; Bansal, R. Matrix metalloproteinases as potential biomarkers and therapeutic targets in liver diseases. Cells, 2020, 9(5), 1212. doi: 10.3390/cells9051212 PMID: 32414178
- Shan, L.; Wang, F.; Zhai, D.; Meng, X.; Liu, J.; Lv, X. Matrix metalloproteinases induce extracellular matrix degradation through various pathways to alleviate hepatic fibrosis. Biomed. Pharmacother., 2023, 161, 114472. doi: 10.1016/j.biopha.2023.114472 PMID: 37002573
- Pistelli, L.; Sansone, C.; Smerilli, A.; Festa, M.; Noonan, D.M.; Albini, A.; Brunet, C. Mmp-9 and il-1β as targets for diatoxanthin and related microalgal pigments: Potential chemopreventive and photoprotective agents. Mar. Drugs, 2021, 19(7), 354. doi: 10.3390/md19070354 PMID: 34206447
- Luo, X.Y.; Meng, X.J.; Cao, D.C.; Wang, W.; Zhou, K.; Li, L.; Guo, M.; Wang, P. Transplantation of bone marrow mesenchymal stromal cells attenuates liver fibrosis in mice by regulating macrophage subtypes. Stem Cell Res. Ther., 2019, 10(1), 16. doi: 10.1186/s13287-018-1122-8 PMID: 30635047
- Li, Y.; Fan, W.; Link, F.; Wang, S.; Dooley, S. Transforming growth factor β latency: A mechanism of cytokine storage and signalling regulation in liver homeostasis and disease. JHEP Reports, 2022, 4(2), 100397. doi: 10.1016/j.jhepr.2021.100397 PMID: 35059619
- Kisseleva, T.; Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(3), 151-166. doi: 10.1038/s41575-020-00372-7 PMID: 33128017
- Wang, P.; Cui, Y.; Wang, J.; Liu, D.; Tian, Y.; Liu, K.; Wang, X.; Liu, L.; He, Y.; Pei, Y.; Li, L.; Sun, L.; Zhu, Z.; Chang, D.; Jia, J.; You, H. Mesenchymal stem cells protect against acetaminophen hepatotoxicity by secreting regenerative cytokine hepatocyte growth factor. Stem Cell Res. Ther., 2022, 13(1), 94. doi: 10.1186/s13287-022-02754-x PMID: 35246254
- Zhao, Y.; Ye, W.; Wang, Y.D.; Chen, W.D. HGF/c-Met: A key promoter in liver regeneration. Front. Pharmacol., 2022, 13, 808855. doi: 10.3389/fphar.2022.808855 PMID: 35370682
- Wang, Z.; Du, K.; Jin, N.; Tang, B.; Zhang, W. Macrophage in liver Fibrosis: Identities and mechanisms. Int. Immunopharmacol., 2023, 120, 110357. doi: 10.1016/j.intimp.2023.110357 PMID: 37224653
- Song, Y.; Zhang, T.J.; Li, Y.; Gao, Y. Mesenchymal stem cells decrease M1/M2 ratio and alleviate inflammation to improve limb ischemia in mice. Med. Sci. Monit., 2020, 26, e923287. doi: 10.12659/MSM.923287 PMID: 32860388
Arquivos suplementares
