Sia-m7G: Predicting m7G Sites through the Siamese Neural Network with an Attention Mechanism


如何引用文章

全文:

详细

Background:The chemical modification of RNA plays a crucial role in many biological processes. N7-methylguanosine (m7G), being one of the most important epigenetic modifications, plays an important role in gene expression, processing metabolism, and protein synthesis. Detecting the exact location of m7G sites in the transcriptome is key to understanding their relevant mechanism in gene expression. On the basis of experimentally validated data, several machine learning or deep learning tools have been designed to identify internal m7G sites and have shown advantages over traditional experimental methods in terms of speed, cost-effectiveness and robustness.

Aims:In this study, we aim to develop a computational model to help predict the exact location of m7G sites in humans.

Objective:Simple and advanced encoding methods and deep learning networks are designed to achieve excellent m7G prediction efficiently.

Methods:Three types of feature extractions and six classification algorithms were tested to identify m7G sites. Our final model, named Sia-m7G, adopts one-hot encoding and a delicate Siamese neural network with an attention mechanism. In addition, multiple 10-fold cross-validation tests were conducted to evaluate our predictor.

Results:Sia-m7G achieved the highest sensitivity, specificity and accuracy on 10-fold crossvalidation tests compared with the other six m7G predictors. Nucleotide preference and model visualization analyses were conducted to strengthen the interpretability of Sia-m7G and provide a further understanding of m7G site fragments in genomic sequences.

Conclusion:Sia-m7G has significant advantages over other classifiers and predictors, which proves the superiority of the Siamese neural network algorithm in identifying m7G sites.

作者简介

Jia Zheng

School of Science, Dalian Maritime University

编辑信件的主要联系方式.
Email: info@benthamscience.net

Yetong Zhou

School of Science, Dalian Maritime University

Email: info@benthamscience.net

参考

  1. Frye M, Harada BT, Behm M, He C. RNA modifications modulate gene expression during development. Science 2018; 361(6409): 1346-9. doi: 10.1126/science.aau1646 PMID: 30262497
  2. Komal S, Zhang LR, Han SN. Potential regulatory role of epigenetic RNA methylation in cardiovascular diseases. Biomed Pharmacother 2021; 137: 111376. doi: 10.1016/j.biopha.2021.111376 PMID: 33588266
  3. Furuichi Y. Discovery of m(7)G-cap in eukaryotic mRNAs. Proc Jpn Acad, Ser B, Phys Biol Sci 2015; 91(8): 394-409. doi: 10.2183/pjab.91.394 PMID: 26460318
  4. Tomikawa C. 7-Methylguanosine modifications in Transfer RNA (tRNA). Int J Mol Sci 2018; 19(12): 4080. doi: 10.3390/ijms19124080 PMID: 30562954
  5. Lin S, Liu Q, Lelyveld VS, Choe J, Szostak JW, Gregory RI. Mettl1/Wdr4-Mediated m7G tRNA methylome is required for Normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol Cell 2018; 71(2): 244-255.e5. doi: 10.1016/j.molcel.2018.06.001 PMID: 29983320
  6. Marchand V, Ayadi L, Ernst FGM, et al. AlkAniline‐Seq: Profiling of m 7 G and m 3 C RNA modifications at single nucleotide resolution. Angew Chem Int Ed 2018; 57(51): 16785-90. doi: 10.1002/anie.201810946 PMID: 30370969
  7. Zhang LS, Liu C, Ma H, et al. Transcriptome-wide mapping of internal N7-methylguanosine methylome in mammalian mRNA. Mol Cell 2019; 74(6): 1304-1316.e8. doi: 10.1016/j.molcel.2019.03.036 PMID: 31031084
  8. Malbec L, Zhang T, Chen YS, et al. Dynamic methylome of internal mRNA N7-methylguanosine and its regulatory role in translation. Cell Res 2019; 29(11): 927-41. doi: 10.1038/s41422-019-0230-z PMID: 31520064
  9. Luo X, Chi W, Deng M. Deepprune: Learning efficient and interpretable convolutional networks through weight pruning for predicting DNA-protein binding. Front Genet 2019; 10: 1145. doi: 10.3389/fgene.2019.01145 PMID: 31824562
  10. Zhang Y, Qiao S, Ji S, Li Y. DeepSite: Bidirectional LSTM and CNN models for predicting DNA-protein binding. Int J Mach Learn Cybern 2020; 11(4): 841-51. doi: 10.1007/s13042-019-00990-x
  11. Chen W, Feng P, Song X, Lv H, Lin H. iRNA-m7G: Identifying N7-methylguanosine sites by fusing multiple features. Mol Ther Nucleic Acids 2019; 18: 269-74. doi: 10.1016/j.omtn.2019.08.022 PMID: 31581051
  12. Yang YH, Ma C, Wang JS, et al. Prediction of N7-methylguanosine sites in human RNA based on optimal sequence features. Genomics 2020; 112(6): 4342-7. doi: 10.1016/j.ygeno.2020.07.035 PMID: 32721444
  13. Song B, Tang Y, Chen K, et al. m7GHub: Deciphering the location, regulation and pathogenesis of internal mRNA N7-methylguanosine (m7G) sites in human. Bioinformatics 2020; 36(11): 3528-36. doi: 10.1093/bioinformatics/btaa178 PMID: 32163126
  14. Zou H, Yin Z. m7G-DPP: Identifying N7-methylguanosine sites based on dinucleotide physicochemical properties of RNA. Biophys Chem 2021; 279: 106697. doi: 10.1016/j.bpc.2021.106697 PMID: 34628276
  15. Liu X, Liu Z, Mao X, Li Q. m7GPredictor: An improved machine learning-based model for predicting internal m7G modifications using sequence properties. Anal Biochem 2020; 609: 113905. doi: 10.1016/j.ab.2020.113905 PMID: 32805275
  16. Dai C, Feng P, Cui L, Su R, Chen W, Wei L. Iterative feature representation algorithm to improve the predictive performance of N7-methylguanosine sites. Brief Bioinform 2021; 22(4): bbaa278. doi: 10.1093/bib/bbaa278
  17. Bi Y, Xiang D, Ge Z, Li F, Jia C, Song J. An interpretable prediction model for identifying N7-methylguanosine sites based on XGBoost and SHAP. Mol Ther Nucleic Acids 2020; 22: 362-72. doi: 10.1016/j.omtn.2020.08.022 PMID: 33230441
  18. Zhang L, Qin X, Liu M, Liu G, Ren Y. BERT-m7G: A transformer architecture based on BERT and stacking ensemble to identify RNA N7-methylguanosine sites from sequence information. Comput Math Methods Med 2021; 2021: 7764764.
  19. Shoombuatong W, Basith S, Pitti T, Lee G, Manavalan B. THRONE: A new approach for accurate prediction of human RNA N7-methylguanosine sites. J Mol Biol 2022; 434(11): 167549. doi: 10.1016/j.jmb.2022.167549 PMID: 35662472
  20. Zhang Y, Yu L, Jing R, Han B, Luo J. Fast and efficient design of deep neural networks for predicting N 7 -methylguanosine sites using autobioseqpy. ACS Omega 2023; 8(22): 19728-40. doi: 10.1021/acsomega.3c01371 PMID: 37305295
  21. Ning Q, Sheng M. m7G-DLSTM: Intergrating directional Double-LSTM and fully connected network for RNA N7-methlguanosine sites prediction in human. Chemom Intell Lab Syst 2021; 217: 104398. doi: 10.1016/j.chemolab.2021.104398
  22. Tahir M, Hayat M, Khan R, Chong KT. An effective deep learning-based architecture for prediction of N7-methylguanosine sites in health systems. Electronics 2022; 11(12): 1917. doi: 10.3390/electronics11121917
  23. Chen Z, Zhao P, Li F, et al. iLearn: An integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA, RNA and protein sequence data. Brief Bioinform 2020; 21(3): 1047-57. doi: 10.1093/bib/bbz041 PMID: 31067315
  24. Chen W, Tang H, Ye J, Lin H, Chou K-C. iRNA-PseU: Identifying RNA pseudouridine sites. Mol Ther Nucleic Acids 2016; 5(7): e332. PMID: 28427142
  25. Wu H, Pan X, Yang Y, Shen HB. Recognizing binding sites of poorly characterized RNA-binding proteins on circular RNAs using attention Siamese network. Brief Bioinform 2021; 22(6): bbab279. doi: 10.1093/bib/bbab279 PMID: 34297803
  26. Vacic V, Iakoucheva LM, Radivojac P. Two Sample Logo: A graphical representation of the differences between two sets of sequence alignments. Bioinformatics 2006; 22(12): 1536-7. doi: 10.1093/bioinformatics/btl151 PMID: 16632492
  27. Luo X, Tu X, Ding Y, Gao G, Deng M. Expectation pooling: An effective and interpretable pooling method for predicting DNA–protein binding. Bioinformatics 2020; 36(5): 1405-12. doi: 10.1093/bioinformatics/btz768 PMID: 31598637
  28. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W. Eds. LightGBM: A highly efficient gradient boosting decision tree. 31st Annual Conference on Neural Information Processing Systems (NIPS). 04-09 Dec; Long Beach, CA, USA. 2017.
  29. Tang Z, Li Z, Hou T, et al. SiGra: Single-cell spatial elucidation through an image-augmented graph transformer. Nat Commun 2023; 14(1): 5618. doi: 10.1038/s41467-023-41437-w PMID: 37699885
  30. Tang Z, Liu X, Li Z, et al. SpaRx: Elucidate single-cell spatial heterogeneity of drug responses for personalized treatment. Brief Bioinform 2023; 24(6): bbad338. doi: 10.1093/bib/bbad338 PMID: 37798249
  31. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN. Eds. Attention is all you need. 31st Annual Conference on Neural Information Processing Systems (NIPS). 04-09 Dec; Long Beach, CA, USA. 2017.
  32. van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res 2008; 9: 2579-605.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024