Peripheral contrast sensitivity and its contribution to myopia onset

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Visual information is central to eye growth and development of myopia. Research into genetic and environmental factors promoting myopia has shown that abnormal contrast signaling between adjacent retinal cones is able to cause axial elongation of the eye globe. Patients with myopia show increased contrast sensitivity in mid-peripheral fields of vision, which can promote myopia progression during the active eye growth in children. High myopia, which is associated with the LVAVA and LIAVA haplotypes of the opsin gene, is believed to be explained by disruption of signaling that is triggered by light absorption by photopigments located in L- and M-cones and that regulates emmetropization. Bipolar cells have receptive fields around their centers that activate contrast produced by distinct images. Their lowest activity was observed in response to blurred images, when the light is evenly distributed across the receptive field. The light affecting a cone normally causes it to hyperpolarize; however, this process may be affected by feedback from adjacent cones that are also activated when the lighting is homogeneous. The studies evidence that not only myopic or hyperopic image defocus contribute greatly to abnormal eye growth, but also changes in contrast sensitivity in the near peripheral retina. Therefore, studies of optical correction methods, i.e., of peripheral defocus and peripheral contrast–modulating spectacles and contact lenses, are ongoing.

Thus, peripheral contrast sensitivity is essential in visual adaptation and eye growth. Changes in peripheral contrast sensitivity may promote myopic refractive response, adding to peripheral defocus. This opens up opportunities for further development of optical methods for management of progressive myopia in children.

全文:

受限制的访问

作者简介

Svetlana Kondratova

Petrovsky National Research Center of Surgery

编辑信件的主要联系方式.
Email: svetlana26.03@mail.ru
ORCID iD: 0000-0002-6522-5310
SPIN 代码: 9095-2169
俄罗斯联邦, Moscow

参考

  1. Wolffsohn JS, Whayeb Y, Logan NS, et al. IMI–global trends in myopia management attitudes and strategies in clinical practice — 2022 Update. Investigative Opthalmology & Visual Science. 2023;64(6):6. doi: 10.1167/iovs.64.6.6 Corrected and republished from: Investigative Opthalmology & Visual Science. 2023;65(5):12. doi: 10.1167/iovs.64.5.12
  2. Aleman AC, Wang M, Schaeffel F. Reading and myopia: contrast polarity matters. Scientific Reports. 2018;8(1):1–8. doi: 10.1038/s41598-018-28904-x EDN: RSFSES
  3. Poudel S, Jin J, Rahimi-Nasrabadi H, et al. Contrast sensitivity of on and off human retinal pathways in myopia. The Journal of Neuroscience. 2023;44(3):e1487232023. doi: 10.1523/jneurosci.1487-23.2023 EDN: SRKCNP
  4. Mutti DO, Mitchell GL, Moeschberger ML, et al Parental myopia, near work, school achievement, and children’s refractive error. Invest Ophthalmol Vis Sci. 2002;43(12):3633–3640.
  5. Schaeffel F, Burkhardt E, Howland H, Williams R. Measurement of refractive state and deprivation myopia in two strains of mice. Optometry and Vision Science. 2004;81(2):99–110. doi: 10.1097/00006324-200402000-00008
  6. Troilo D, Smith EL, Nickla DL, et al. IMI – report on experimental models of emmetropization and myopia. Investigative Opthalmology & Visual Science. 2019;60(3):M31–M88. doi: 10.1167/iovs.18-25967 EDN: BDECSF
  7. Smith EL. Prentice award lecture 2010: a case for peripheral optical treatment strategies for myopia. Optometry and Vision Science. 2011;88(9):1029–1044. doi: 10.1097/OPX.0b013e3182279cfa
  8. Greenwald SH, Kuchenbecker JA, Rowlan JS, et al. Role of a dual splicing and amino acid code in myopia, cone dysfunction and cone dystrophy associated with L/M opsin interchange mutations. Transl Vis Sci Technol. 2017;6(3):2. doi: 10.1167/tvst.6.3.2
  9. Sabarinathan R, Tafer H, Seemann SE, et al. The RNAsnp web server: predicting SNP effects on local RNA secondary structure. Nucleic Acids Research. 2013;41(W1):W475–W479. doi: 10.1093/nar/gkt291
  10. Patterson EJ, Wilk M, Langlo CS, et al. Cone photoreceptor structure in patients with X-linked cone dysfunction and red-green color vision deficiency. Investigative Opthalmology & Visual Science. 2016;57(8):3853–3863. doi: 10.1167/iovs.16-19608
  11. Carroll J, Dubra A, Gardner JC, et al. The effect of cone opsin mutations on retinal structure and the integrity of the photoreceptor mosaic. Investigative Opthalmology & Visual Science. 2012;53(13):8006–8015. doi: 10.1167/iovs.12-11087
  12. Wiesel TN, Raviola E. Myopia and eye enlargement after neonatal lid fusion in monkeys. Nature. 1977;266(5597):66–68. doi: 10.1038/266066a0
  13. Rappon J, Chung C, Young G, et al. Control of myopia using diffusion optics spectacle lenses: 12-month results of a randomised controlled, efficacy and safety study (CYPRESS). Br J Ophthalmol. 2023;107(11):1709–1715. doi: 10.1136/bjo-2021-321005
  14. Xu Z, Zhuang Y, Chen Z, et al. Assessing the contrast sensitivity function in myopic parafovea: a quick contrast sensitivity functions study. Frontiers in Neuroscience. 2022;16:971009. doi: 10.3389/fnins.2022.971009 EDN: KEBDFI
  15. Smith EL, Kee C, Ramamirtham R, et al. Peripheral Vision Can Influence Eye Growth and Refractive Development in Infant Monkeys. Investigative Opthalmology & Visual Science. 2005;46(11):3965–3972. doi: 10.1167/iovs.05-0445
  16. Lanca C, Pang CP, Grzybowski A. Effectiveness of myopia control interventions: a systematic review of 12 randomized control trials published between 2019 and 2021. Frontiers in Public Health. 2023;11:1125000. doi: 10.3389/fpubh.2023.1125000 EDN: VUJJUO
  17. Li X, Ding C, Li Y, et al. Influence of lenslet configuration on short-term visual performance in myopia control spectacle lenses. Front Neurosci. 2021;15:667329. doi: 10.3389/fnins.2021.667329
  18. Волков В.В. Показатели визо- и рефрактометрии в оценке зрительной работоспособности // Офтальмологический журнал. 1986. № 8. С. 455–457. / Volkov VV. Indicators of viso- and refractometry in the assessment of visual performance. Journal of Ophthalmology. 1986;(8):455–457. (In Russ.)
  19. Campbell FW, Robson JG. Application of fourier analysis to the visibility of gratings. The Journal of Physiology. 1968;197(3):551–566. doi: 10.1113/jphysiol.1968.sp008574
  20. Arden GB. The importance of measuring contrast sensitivity in cases of visual disturbance. British Journal of Ophthalmology. 1978;62(4):198–209. doi: 10.1136/bjo.62.4.198
  21. Даниличева В.Ф. Современная офтальмология: руководство. 2-е изд. Санкт-Петербург: Питер, 2009. 688 с. / Danilicheva VF. Modern ophthalmology: a guide. 2nd ed. St. Petersburg: Peter; 2009. (In Russ.)
  22. Белозеров А.Е. Разработка и внедрение компьютерных функциональных методов в офтальмологии: дис. … д-р биол. наук. Москва, 2003. / Belozerov AE. Development and implementation of computer functional methods in ophthalmology [dissertation]. Moscow; 2003. (In Russ.) EDN: NMKHJN
  23. Applegate RA, Howland HC, Sharp RP, et al. Corneal aberrations and visual performance after radial keratotomy. Journal of Refractive Surgery. 1998;14(4):397–407. doi: 10.3928/1081-597X-19980701-05
  24. Chwesiuk M, Mantiuk R. Measurements of contrast sensitivity for peripheral vision. In: Proceedings of the SAP ’19: ACM Symposium on Applied Perception 2019. Barcelona, 2019 Sept 19–20. New York: Association for Computing Machinery; 2019. P. 1–9.
  25. Тарутта Е.П., Кондратова С.Э., Милаш С.В., Тарасова Н.А. Исследование периферической пространственной контрастной чувствительности глаз // Российская педиатрическая офтальмология. 2023. Т. 18, № 1. С. 21–27. / Tarutta EP, Kondratova SE, Milash SV, Tarasova NA. Peripheral spatial contrast sensitivity of the eyes. Russian Pediatric Ophthalmology. 2023;18(1):21–27. doi: 10.17816/rpoj138658 EDN: WBZLKS
  26. Ding C, Mao D, Li X, et al. Peripheral myopic defocus signal affects the efficiency of visual information processing in myopic children. Ophthalmic and Physiological Optics. 2024;44(5):1010–1016. doi: 10.1111/opo.13325 EDN: AVACCB

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86503 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80630 от 15.03.2021 г
.