Влияние постоянной слабомиопической дефокусировки в бинокулярном и монокулярном альтернирующем очковом формате на течение миопии у детей



Цитировать

Полный текст

Аннотация

Цель: изучить влияние постоянной дозированной слабомиопической дефокусировки в билатеральном и монолатеральном альтернирующем очковом формате на динамику рефракции и ее компонентов у детей в отдаленные сроки. Материал и методы. 129 детей (258 глаз) в возрасте от 5 до 12 лет были разделены на 4 группы. Первая группа - 48 детей в возрасте 5-8 лет с эмметропией и факторами риска развития близорукости. Вторая группа - 46 детей в возрасте 7-11 лет со слабой миопией, носивших альтернирующую монолатеральную слабомиопическую дефокусировку. Первую контрольную группу составили 15 детей (30 глаз) в возрасте от 6 до 9 лет (в среднем 7,5±1,4 года) с псевдомиопией без коррекции. Вторая контрольная группа состояла из 20 детей (40 глаз) в возрасте от 7 до 12 лет (в среднем 9,7±1,2 года) с миопией слабой степени, носившие монофокальные очки. Результаты. У детей первой группы в условиях постоянной слабомиопической дефокусировки уже через 1 месяц происходил сдвиг рефракции в сторону гиперметропии, обусловленный уменьшением толщины хрусталика и углублением передней камеры. Ни в одном случае не было отмечено возникновения миопии в прослеженный период до 9 лет. У пациентов второй группы рефракция оставалась стабильной в 81,8% случаев в течение 4-летнего срока наблюдения и в 66,6% в течение 7-летнего срока наблюдения; выявлено недостоверное увеличение передне-задней оси и достоверное увеличение поперечного диаметра глазного яблока. У детей контрольных групп динамическое наблюдение в течение 3 лет обнаружило усиление циклоплегической рефракции с достоверным увеличением переднезадней оси и недостоверным увеличением поперечного диаметра. Выводы. Постоянная слабомиопическая дефокусировка изображения в бинокулярном очковом формате тормозит рост глаза и сдвиг рефракции в сторону миопии у детей со слабой гиперметропией, эмметропией и миопией слабой степени. Разработанный нами метод альтернирующей монолатеральной слабомиопической дефокусировки тормозит прогрессирование миопии у 81,8% детей с миопией слабой степени в течение 4-х лет и 66,6% - в течение 7 лет.

Полный текст

Введение. В последние годы во всем мире распространенность миопии у детей неуклонно растет, составляя 70-80% в урбанизированных странах Юго-Восточной Азии [1, 2]. Близорукость нередко сопровождается глаукомой и катарактой, а также является основным фактором риска возникновения отслойки сетчатки [3-6]. Поиск эффективных и стратегических методов контроля прогрессирования миопии у детей приобретает особо важное значение. Принятые ранее попытки контроля прогрессирования миопии с помощью оптических средств коррекции - бифокальных и мультифокальных (с прогрессивными добавками) очковых и контактных линз оказались недостаточно эффективными [7, 8]. Было показано, что в течение трех лет наблюдения снижение темпов прогрессирования в группе прогрессивных очков по сравнению с монофокальными составило всего 0,2 дптр [9]. Противоречивые результаты были получены в исследованиях, где изучалось влияние гипокоррекции на динамику рефракции. По данным некоторых источников, прогрессирование миопии происходит достоверно более быстро у детей, носивших недокоррекцию, по сравнению с теми, кто носит полную коррекцию [10]. С другой стороны, J. Phillips сообщал, что постоянная монолатераль- ная дефокусировка ретинального изображения, наведенная с помощью гипокоррекции миопии на одном глазу, замедляет рост глаза и прогрессирование миопии на этом глазу. Автор сделал вывод, что оптическими методами можно регулировать реф- рактогенез у детей так же, как у животных [11, 12]. В многочисленных экспериментальных исследованиях показано, что индуцированная рассеивающими (отрицательными) линзами “гиперметро- пическая” дефокусировка вызывает компенсаторное увеличение переднезадней оси (ПЗО) глазного яблока, совмещая плоскость сетчатки с фокусом, и индуцирует аксиальную миопию. Напротив, “миопическая” дефокусировка с помощью собирательных (положительных) линз, когда изображение формируется перед сетчаткой, тормозит у экспериментальных животных рост глазного яблока [13-20]. G.K. Hung и K.J. Ciuffreda доказали, что в формировании рефракции важную роль играют как генетические, так и внешние факторы и предложили теорию ретинального дефокуса как механизма регуляции роста глаза [21, 22]. Проведенные нами ранее наблюдения за детьми с гиперметропией слабой и средней степени, носившими в течение нескольких лет пенализирую- щие очки по поводу дисбинокулярной или анизоме- тропической амблиопии, показали, что постоянная слабомиопическая дефокусировка (то есть пенали- зация вдаль избыточными линзами) тормозит рост глаза и естественное усиление рефракции [23]. Цель исследования: изучить влияние постоянной дозированной слабомиопической дефокусировки в билатеральном и монолатеральном альтернирующем очковом формате на динамику рефракции и ее компонентов у детей в отдаленные сроки. Материал и методы. Всего было обследовано 129 детей (258 глаз) в возрасте от 5 до 11 лет. Перед лечением родители пациентов получили полную информацию о сущности метода и о потенциальных положительных и отрицательных эффектах, согласно Хельсинкской декларации; подписали DOI: 10.18821/1993-1859-2016-11-2-82-88 5 10 IS >0 25 30 3S (ml Рис. 1. Изменения ГПК и ТХ у пациентов 1-й группы на фоне слабомиопического дефокуса в течение одного месяца. LT 3.60 AT 41 ft ACD 2.56 Z1,t)i AUTOMATIC PHAKIC ' patiekt: GAIN 100 Г Biometry Frozen (THIS RECORD IS NOT информированное согласие на включение детей в исследование. Исследование было одобрено Этическим комитетом Московского НИИ глазных болезней им. Гельмгольца. Пациенты были разделены на 4 группы. Первую группу составили 48 детей (96 глаз) в возрасте от 5 до 8 лет (в среднем 6,5±0,35 года), представлявших группу риска по развитию близорукости: с наследственной предрасположенностью (миопия у одного или обоих родителей, среди них 27% с высокой миопией), со слабыми запасами возрастной дальнозоркости и псевдомиопией. Рефракция до циклоплегии составила -0,5±0,06 дптр, после циклоплегии +0,52±0,10 дптр. Пациентам было назначено постоянное ношение бинокулярной слабомиопической дефокусировки положительными линзами от sph +0,5 до 1,5 дптр (в зависимости от циклоплегической рефракции). Во 2-ю группу вошли 46 детей (92 глаза) в возрасте от 7 до 11 лет (в среднем 9,5±1,4 года) с миопией слабой степени от -0,75 до -2,25 дптр (в среднем на узкий зрачок -1,46±0,13 дптр, в условиях циклоплегии -1,29±0,10 дптр). Ввиду низкой некорригированной остроты зрения, подбирали альтернирующую монолатеральную слабомиопическую дефокусировку, которая заключалась в следующем. Детям подбирали 2 пары очков для постоянного ношения таким образом: один глаз корригировали для дали до получения остаточной миопии со стеклом порядка 0,50 дптр, при этом другой глаз корригировали до получения остаточной или индуцированной миопии порядка 1,50 дптр (стекло от (+)0,5 до (-)0,75). Например, при миопии -1,0 дптр на оба глаза на один глаз назначали стекло (-)0,5 дптр, на другой (+0,5 дптр). При рефракции М = 0,5 дптр в первом и М = 1,5 дптр во втором случае в очковой оправе помещали без- диоптрийное стекло, то есть сохраняли естественный дефокус. Дети носили очки поочередно: один день - правый глаз в режиме миопической дефокусировки, другой день - левый [24]. 1- ю контрольную группу составили 15 детей (30 глаз) в возрасте от 6 до 9 лет (в среднем 7,5±1,4 года) с псевдомиопией (рефракция до циклоплегии -0,38±0,12 дптр, рефракция в условиях циклоплегии +0,78±0,10 дптр). При этом не назначали никакой коррекции. 2- ю контрольную группу составили 20 детей (40 глаз) в возрасте от 7 до 12 лет (в среднем 9,7±1,2 года) с миопией слабой степени (в среднем до ци- клоплегии -0,97±0,15 дптр, в условиях циклоплегии -0,83±0,11 дптр). Назначали традиционную очковую коррекцию: оба глаза корригировали до получения монокулярной остроты зрения вдаль 0,7-0,8, бинокулярной остроты зрения - 0,8-0,9 (остаточная миопия 0,5-0,75 дптр). Всем пациентам было проведено полное офтальмологическое обследование: визометрия без коррекции и с оптической коррекцией; авторефрактометрия до и после циклоплегии; ультразвуковая биометрия без циклоплегии с измерением ПЗО и поперечного диаметра (ПД) глазного яблока, глубины передней камеры (ГПК), толщины хрусталика (ТХ); офтальмоскопия центральных и периферических отделов глазного дна; определение сенсорного доминирования на четырехточечном цветотесте; исследование мышечного равновесия (форий) для дали и близи с помощью призменного компенсатора и палочки Maddox. Измерение поперечного размера глазного яблока проводили следующим образом: при максимальном отклонении глаза к носу ультразвуковой датчик ориентировали перпендикулярно зрительной оси в области экватора. DOI: 10.18821/1993-1859-2016-11-2-82-88 Таблица 1 Изменение рефракции, остроты зрения и анатомо-оптических параметров у пациентов 1-й группы в отдаленный период Период исследования Число глаз Рефракция до циклоплегии, дптр Рефракция в условиях циклоплегии, дптр Острота зрения без коррекции ПЗО, мм ПД, Мм ГПК, мм ТХ, мм Начальный 96 -0,50±0,06 +0,52±0,10 0,80±0,02 22,34±0,50 24,1±0,42 3,02±0,32 3,95±0,29 Конечный 96 +0,44±0,04 +0,88±0,09 1,0±0,02 22,68±0,58 25,3±0,51* 3,31±0,34* 3,63±0,41* Примечание. * - р < 0,01 при сравнении с началом исследования. Математическую обработку полученных данных проводили с использованием параметрических и непараметрических методов. Стандартную статистическую обработку осуществляли при помощи программы Microsoft Excel, при этом в качестве основных показателей для сравнительного анализа применяли среднее значение (М) и стандартную ошибку средней величины (m). Уровень достоверности определяли по стандартному критерию Стьюдента. Результаты. Динамическое наблюдение за пациентами 1-й группы проводилось в течение 3-9, в среднем 5,2±1,7 лет (контрольные осмотры через 1, 3, 6 и далее каждые 6 месяцев). В условиях постоянной слабомиопической дефокусировки уже через 1 месяц у всех пациентов происходил сдвиг рефракции в сторону гиперметропии. Ультразвуковая биометрия показала, что этот сдвиг рефракции был обусловлен уменьшением толщины хрусталика и углублением передней камеры (рис. 1) . Эти изменения сохранялись в течение всего периода наблюдения. В конце наблюдения рефракция составила в среднем +0,44±0,04 дптр на узкий зрачок и +0,88±0,09 дптр на фоне циклоплегии, а острота зрения без коррекции повысилась до 1,0. Ни в одном случае не отмечено возникновения миопии в прослеженный период до 9 лет. В течение всего периода наблюдения постоянное ношение дефокусирующих очков сопровождалось изменениями эхобиометрических параметров глаза: увеличением глубины передней камеры на 0,29±0,05 мм (р < 0,01) , уплощением хрусталика на 0,32±0,05 мм (р < 0,01), незначительным увеличением аксиальной длины глаза в среднем на 0,34±0,04 мм (p > 0,05) и значительным увеличением его поперечного размера в среднем на 1,2±0,08 мм (р < 0,01) (табл. 1). Очевидно, включение этих эмметропизирую- щих факторов, то есть механизмов дезаккомодации, привело к ослаблению рефракции и устранению псевдомиопии и совмещению фокусной точки с плоскостью сетчатки. Интересно отметить, что первоначально инициированные положительными сферическими линзами изменения ГПК и ТХ сохранялись в течение всего периода наблюдения и сопровождались торможением роста ПЗО; увеличение горизонтального размера глазного яблока сохранялось и превысило рост ПЗО более чем в 3 раза. Динамическое наблюдение за пациентами 2-й группы проводилось в течение 3-6, в среднем 4,1±0,9 лет (контрольные осмотры каждые 3 месяца). Двум пациентам альтернирующая анизокоррекция через 6 месяцев была отменена по причине чрезмерного усиления экзофории и даже появления непостоянной экзотропии. Исходная величина эк- зофории у этих пациентов была более 10,0 пр. дптр. (12 пр. дптр и 15 пр.дптр соответственно). После отмены альтернирующей анизокоррекции мышечный баланс восстановился, однако эти пациенты были исключены нами из дальнейшего наблюдения. У 36 детей (81,8%) из 44 оставшихся под наблюдением во 2-й группе рефракция оставалась стабильной (усилилась не более чем на 0,5 дптр за весь период наблюдения) и составила в среднем -1,57±0,11 дптр, некорригированная острота зрения не изменилась (табл. 2). Острота зрения с оптимальной коррекцией у всех пациентов 2-й группы, как в начале, так и в конце исследования, равнялась 1,0 (20/20). Ультразвуковая биометрия показала недостоверное увеличение ПЗО на 0,08±0,60 мм и достоверное увеличение ПД глазного яблока на 0,75 мм (р < 0,01) (см. табл. 2). В начале наблюдения: Таблица 2 Изменение рефракции, остроты зрения и анатомо-оптических параметров у 36 пациентов со стабильной рефракцией Период исследования Число глаз Рефракция до циклоплегии, дптр Рефракция в условиях циклоплегии, дптр Острота зрения без коррекции ПЗО, мм ПД, мм ГПК, мм ТХ, мм Начальный 72 -1,60±0,05 -1,36±0,01 0,30±0,40 23,92±0,62 23,95±0,11 3,60±0,29 3,45±0,17 Конечный 72 -1,78±0,03 -1,57±0,11 0,34±0,20 24,00±0,60 24,70±0,81* 3,52±0,30 3,43±0,16 Примечание. * - -р < 0,01 при сравнении с началом исследования. Таблица 3 Изменение рефракции, остроты зрения и анатомо-оптических параметров у 8 пациентов с прогрессированием миопии Период исследования Число глаз ПЗО, мм ПД, мм ГПК, мм ТХ, мм Рефракция до ци- клоплегии, дптр Рефракция в условиях циклоплегии, дптр Острота зрения без коррекции Начальный 16 -1,32±0,06 -1,22±0,03 0,34±0,12 23,63±0,75 24,32±0,23 3,09±0,43 3,48±0,21 Конечный 16 -2,14 ±0,05* -1,93±0,20* 0,19±0,2 24,37±0,63* 24,81±0,12* 3,51±0,32* 3,43±0,12 Примечание. * -р< 0,01 при сравнении с началом исследования. Группа Число глаз Период исследования Рефракция до циклоплегии, дптр Рефракция в условиях циклоплегии, дптр ПЗО, мм ПД, мм 1-я контрольная 30 начальный -0,38±0,12 +0,78±0,10 22,93±0,60 23,9±0,55 конечный -1,07±0,10* -0,60±0,07* 23,65±0,50* 24,2±0,59 2-я контрольная 40 начальный -0,97±0,15 -0,83±0,11 23,69±0,70 24,1±0,51 конечный -3,05±0,17* -2,88±0,15* 24,37±0,60* 24,3±0,69 DOI: 10.18821/1993-1859-2016-11-2-82-88 Изменение анатомо-оптических параметров у пациентов контрольных групп Примечание. * -р < 0,01 при сравнении с началом исследования. Таблица 5 Изменение рефракции, остроты зрения и анатомо-оптических параметров у пациентов 1-й группы за 6-10, в среднем 7,3±0,5 лет Таблица 4 Период исследования Число глаз ПЗО, мм ПД, мм ГПК, мм ТХ, мм Рефракция до циклоплегии, дптр Рефракция в условиях циклоплегии, дптр Острота зрения без коррекции Начальный 24 -0,34±0,11 +0,23±0,03 0,83±0,07 22,31±0,51 24,32±0,12 3,05±0,22 3,86±0,18 Конечный 24 +0,21±0,05 +0,46±0,07 1,0±0,03 22,89±0,41** 25,63±0,37* 3,30±0,14 3,53±0,32 Примечание. * -р < 0,01 при сравнении с началом исследования; ** -р < 0,05 при сравнении с началом исследования. Таблица 6 Изменение рефракции и анатомо-оптических параметров у пациентов 2-й группы за 5-9 в среднем 7,1±0,6 лет Период исследования Число глаз Рефракция до ци- клоплегии, дптр Рефракция в условиях циклоплегии, дптр ПЗО, мм ПД, мм Начальный 60 -1,56±0,04 -1,41±0,11 23,86±0,11 23,98±0,09 Конечный 60 -2,37±0,12 -2,17±0,09 24,20±0,12 24,79±0,24 Динамика параметров 0,81* 0,76* 0,34 0,81* Примечание. * -р< 0,01 при сравнении с началом исследования. ПЗО ~ 23,92±0,62 мм; ГПК ~ 3,60±0,29 мм; ТХ « 3,45±0,17, ПД « 23,95±0,11 мм. На фоне альтернирующей анизокоррекции через 3-6 лет: ПЗО « 24,00±0,60 м; ГПК « 3,52±030 мм; ТХ ~ 3,43±0,16 мм; ПД ~ 24,70±0,81 мм. У 8 пациентов (18,2%) из 2-й группы отмечено прогрессирование миопии на 0,55-1,25 дптр (в среднем на 0,71±0,11 дптр) в течение первых двух лет ношения альтернирующей анизокоррекции. Данные представлены в табл. 3. Анализ эхобиометрических параметров показал: увеличение аксиального размера глаза на 0,74±0,61 мм (р < 0,01), углубление ПК на 0,42±0,35 мм (р < 0,01), при этом ТХ не изменилась, увеличение поперечного размера глаза составило 0,49±0,17 мм (р < 0,01) (см. табл. 3). Ввиду прогрессирования миопии этим пациентам альтернирующий дефокус был заменен на другие виды коррекции. В контрольных группах динамическое наблюдение в течение 3-х лет обнаружило усиление рефракции как у детей с псевдомиопией (1-я контрольная группа), так и у детей со слабой миопией (2-я контрольная группа) (табл. 4). У пациентов 1-й контрольной группы миопия развилась на 23 глазах из 30 с псевдомиопией, что привело к сдвигу среднего показателя неци- клоплегической рефракции с -0,38±0,12 дптр до -1,07±0,10 дптр, циклоплегической рефракции с +0,78±0,10 дптр до -0,60±0,07 дптр. Было выявлено увеличение аксиального размера глаза на 0,72±0,04 мм (р < 0,01) и недостоверное увеличение поперечного размера на 0,30±0,5 мм (р>0,05). У детей 2-й контрольной группы отмечено прогрессирование миопии на 2,05±0,10 дптр, рост ПЗО на 0,68±0,52 мм (р < 0,01) и незначительное увеличение поперечного размера глаза на 0,2±0,5 мм (р > 0,05). 12 детей (24 глаза) из 1-й группы были отслежены в отдаленный период - 6-10, в среднем 7,3±0,5 лет. Весь период наблюдения дети продолжали носить назначенную коррекцию. Рефракция через 7,3 лет составила +0,23±0,03 на узкий зрачок и +0,46±0,07 на фоне циклоплегии, при этом острота зрения с коррекцией и без коррекции сохранялась 1,0. Ультразвуковая биометрия выявила увеличение аксиального размера глаза в среднем на 0,58±0,05 мм (р < 0,05) (ПЗО « 22,89±0,41 мм) и увеличение поперечного размера глаза на 1,31±0,09 мм (р < 0,01) (ПД ~ 25,63±0,37 мм) за весь период наблюдения (табл. 5). В отдаленный период - 5-9, в среднем 7,1±0,6 лет, из 2-й группы прослежено 30 детей (60 глаз). В конце наблюдения рефракция составила в среднем -2,37±0,12 дптр на узкий зрачок и -2,17±0,09 дптр на фоне циклоплегии (табл. 6). Среднее усиление рефракции составило 0,73 дптр за весь период наблюдения. У 20 детей из 30 оставшихся под наблюдением во 2-й группе рефракция оставалась стабильной (изменилась не более чем на 0,5 дптр за весь период наблюдения) и составила в среднем -1,79±0,08 дптр, у 10 пациентов после 3-х лет стабилизации наблюдалось медленное прогрессирование миопии на 1,63 дптр за весь срок наблюдения. Динамика эхобиометрических параметров у пациентов со стабильной и усилившейся рефракцией показана на рис. 2. У пациентов со стабильной 24,8-1 24,6- 24,4- 24- 23,8- 23,6- -1 23,4- 24,824,624,42423,823,623,4 П30 О В начале исследования Щ В конце исследования Рис. 2. Динамика эхобиометрических параметров у пациентов с различной рефракцией в отдаленные сроки. а - со стабильной, б - с усилившейся. рефракцией произошло недостоверное увеличение ПЗО на 0,18 (р > 0,05) мм и достоверное увеличение ПД глазного яблока на 0,83 мм (р < 0,01). У пациентов с усилившейся рефракцией ультразвуковая биометрия показала достоверное увеличение ПЗО на 0,63 (р < 0,01) мм и достоверное увеличение ПД глазного яблока на 0,75 мм (р < 0,01). Обсуждение. Отягощенная наследственность и снижение возрастного «запаса дальнозоркости», согласно многочисленным сообщениям, являются установленными факторами риска развития приобретенной миопии, а псевдомиопия, или патологический тонус, или привычно-избыточное напряжение аккомодации, являются не только фактором риска, но и этапом в клинической манифестации близорукости [25]. Оптическая дефокусировка изображения по миопическому типу у пациентов 1- й группы вызывала включение эмметропизиру- ющих механизмов в виде уплощения хрусталика и углубления передней камеры, то есть механизмов дезаккомодации, что привело к устранению псевдомиопии и совмещению фокусной точки с плоскостью сетчатки. Представляет интерес тот факт, что первоначально инициированные положительными сферическими линзами изменения ГПК и ТХ сохранялись в течение всего периода наблюдения и сопровождались торможением роста ПЗО. Возможно, участие аккомодацион- но-хрусталикового механизма в регуляции роста глаза и рефрактогенезе заключается именно в направленности реакции аккомодации: положительное (с усилением динамической рефракции глаза) или отрицательное (с ослаблением динамической рефракции). Возможно также, что суть не в том или ином сокращении цилиарной мышцы, а в периодах дефокусировки, неизбежно и многократно повторяющихся в течение всего дня вследствие усталости и расслабления мышцы. В этом случае дефокусировка будет наступать либо по гиперметропическому типу (если аккомодационный аппарат находился в напряжении, то есть работал на усиление рефракции), либо по миопическому типу, как в случае с постоянным ношением слабоположительных линз, вынуждающих аккомодацию работать на ослабление рефракции. Точный механизм действия оптического дефоку- DOI: 10.18821/1993-1859-2016-11-2-82-88 са изображения на рефрактогенез человеческого глаза нуждается в дальнейшем и разностороннем изучении. Однако полученные нами результаты у пациентов 1-й группы позволяют уже на данном этапе утверждать, что постоянное ношение слабых положительных сферических линз в бинокулярном формате устраняет псевдомиопию и предотвращает ее переход в истинную близорукость за счет торможения аксиального роста глаза, при этом отмечается активный экваториальный рост, способствующий уплощению хрусталика и углублению передней камеры. На начальных этапах развития приобретенной миопии у детей эмметро- пизирующие факторы в виде уплощения хрусталика и углубления передней камеры компенсируют какое-то время удлинение ПЗО глаза и сдерживают клиническую манифестацию близорукости [26]. Последняя наступает, очевидно, когда возможности данного эмметропизирующего механизма исчерпываются. Об этом свидетельствует сравнение биометрических параметров в 1-й (предмиопия, псевдомиопия) и во 2-й (слабая миопия) группах. ТХ у детей 2-й группы достоверно меньше, чем в 1-й (в среднем 3,48±0,25 мм против 3,95±0,29 мм; р < 0,01), а ГПК достоверно больше ( в среднем 3,58±0,34 мм против 3,02±0,32 мм; р < 0,01). При этом дальнейшее изменение этих параметров практически невозможно (см. табл. 2). Таким образом, индуцированный приставлением собирающих сферических стекол слабомиопический дефокус и естественный дефокус, вызванный развивающейся начальной миопией, оказывают одинаковое действие на аккомодацион- но-хрусталиковый аппарат, ослабляющий в ответ динамическую рефракцию глаза. Однако в отличие от искусственно индуцированного естественный слабомиопический дефокус не тормозит, как известно, дальнейшее развитие близорукости, иначе вся миопическая рефракция останавливалась бы в своем развитии на этом уровне. Возможно, что особое действие оказывает положительная сферическая аберрация, индуцированная plus-линзой. Возможно, причина кроется в том, на каком этапе приложен индуцированный дефокус: до клинической манифестации миопии или после, когда исчерпаны резервные механизмы. Однако и на этом этапе, как показывают полученные результаты, дозированная слабомиопическая дефокусировка приводит к торможению прогрессирования близорукости. Особенностью предложенного нами метода альтернирующей монолатеральной дефокусировки является индуцированная анизометропия, безусловно, оказывающая воздействие на бинокулярные функции и мышечное равновесие. Состояние и динамика этих показателей имеют большое значение как с точки зрения возможных противопоказаний и побочных эффектов предложенной коррекции, так и с позиции раскрытия механизмов прогрессирования миопии и возможностей его профилактики и будут представлены в наших последующих сообщениях. DOI: 10.18821/1993-1859-2016-11-2-82-88 Выводы 1. Постоянная слабомиопическая дефокусировка изображения в бинокулярном очковом формате тормозит рост глаза и сдвиг рефракции в сторону миопии у детей со слабой гиперметропией, эмме- тропией и миопией слабой степени. 2. Разработанный нами метод альтернирующей монолатеральной слабомиопической дефокусировки замедляет прогрессирование миопии у 81,8% детей с миопией слабой степени в течение 4-х лет и у 66,6% - в течение 7 лет. Финансирование. Финансирование исследования и публикации не осуществлялось. Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
×

Об авторах

Е. П Тарутта

ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России

105062 Москва, РФ

Н. В Ходжабекян

ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России

105062 Москва, РФ

О. Б Филинова

ГБУ «Детская городская поликлиника № 133» Департамента здравоохранения Москвы

Сергей Викторович Милаш

ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России

Email: sergey_milash@yahoo.com
врач офтальмолог 105062 Москва, РФ

Г. В Кружкова

ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России

105062 Москва, РФ

Список литературы

  1. Lin L.L.K., Shih Y.F., Hsiao C.K., Chen C.J. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Ann. Acad. Med. Singapore. 2004; 33 (1): 27-33.
  2. Foster P.J., Jiang Y. Epidemiology of myopia. Eye (Lond.). 2014; 28 (2): 202-8.
  3. Curtin B.J., Karlin D.B. Axial length measurements and fundus changes of the myopic eye. I. The posterior fundus. Trans. Am. Ophthalmol. Soc. 1970; 68: 312-34.
  4. Pierro L., Camesasca F.I., Mischi M., Brancato R. Peripheral retinal changes and axial myopia. Retina. 1992; 12 (1) : 12-7.
  5. Lim R., Mitchell P., Cumming R.G. Refractive associations with cataract: the Blue Mountains Eye Study. Invest. Ophthalmol. Vis. Sci. 1999; 40: 3021-6.
  6. Mitchell P., Hourihan F., Sandbach J., Wang J.J. The relationship between glaucoma and myopia: the Blue Mountains Eye Study. Ophthalmology. 1999; 106: 2010-5.
  7. Edwards M.H., Li R.W., Lam C.S., Lew J.K., Yu B.S. The Hong Kong progressive lens myopia control study: study design and main findings. Invest. Ophthalmol. Vis. Sci. 2002; 43: 2852-8.
  8. Gwiazda J., Hyman .L, Hussein M., Everett D., Norton T.T., Kurtz D. et al. A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children. Invest. Ophthalmol. Vis. Sci. 2003; 44: 1492-500.
  9. Gwiazda J.E., Hyman L., Norton T.T., Hussein M., Marsh-Tootle W., Manny R. et al. Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children. Invest. Ophthalmol. Vis. Sci. 2004; 45: 2143-51.
  10. Chung K., Mohidin N., O’Leary D.J. Undercorrection of myopia enhances rather than inhibits myopia progression. Vision Res. 2002; 42: 2555-9.
  11. Flitcroft D.I. The lens paradigm in experimental myopia: Oculomotor, optical and neurophysiological considerations. Ophthalm. Physiol. Opt. 1999; 19: 103-11.
  12. Phillips J.R. Monovision slows juvenile myopia progression unilaterally. Br. J. Opthalmol. 2005; 89: 1196-200.
  13. Phillips J. Spectacle lens defocus alters myopia progression rate in schoolchildren. In: Proceedings of the 10-th International Myopia Conference. Cambridge; 2004: 38.
  14. Irving E.L., Callender M.G., Sivak J.G. Inducing ametropias in hatchling chicks by defocus - Aperture effects and cylindrical lenses. Vision Res. 1995; 35: 1165-74.
  15. Norton T.T., Siegwart J.T. Animal models of emmetropization: Matching axial length to the focal plane. J. Am. Optom. Assoc. 1995; 66: 405-14.
  16. Schaeffel F., Howland H.C. Mathematical model of emmetropization in the chicken. J. Opt. Soc. Am. 1988; 5: 2080-6.
  17. Smith E.L., Hung L.F., Harwerth R.S. Effects of optically induced blur on the refractive status of young monkeys. Vision Res. 1994; 34: 293-301.
  18. Wallman J., Adams J.I. Developmental aspects of experimental myopia in chicks: Susceptibility, recovery and relation to emmetropization. Vision Res. 1987; 27: 1139-63.
  19. Wallman J., Wildsoet C., Xu A., Gottlieb M.D., Nickla D.L., Marran L., et al. Moving the retina: Choroidal modulation of refractive state. Vision Res. 1995; 35: 37-50.
  20. Wildsoet C.F. Active emmetropization-evidence for its existence and ramifications for clinical practice. Ophthalm. Physiol. Opt. 1997; 17: 279-90.
  21. Hung G.K., Ciuffreda K.J. Model of human refractive error development. Curr. Eye Res. 1999; 19: 41-52.
  22. Hung G.K., Ciuffreda K.J. An incremental retinal-defocus theory of the development of myopia. Comments Theoret. Biol. 2003; 8: 511-38.
  23. Tarutta E.P. An inhibitory effect of penalization (hyperopic overcorrection) on eye growth and refractogenesis. In: Proceedings of the 10-th International Myopia Conference, Cambridge; 2004: 27.
  24. Тарутта Е.П., Ходжабекян Н.В., Филинова О.Б., Кружкова Г.В. Влияние постоянной дозированной слабомиопической дефокусировки на постнатальный рефрактогенез. Вестн. офтальмол. 2008; (6): 21-5.
  25. Grosvenor T., Goss D.A. Clinical Management of Myopia. Boston: Butterwotth-Heinemann; 1999.
  26. Mutti D.O., Zadnik K., Fuzaro R.E., Friedman N.E., Sholtz R.I., Adams A.J. Optical and structural development of the crystalline lens in childhood. Invest. Ophthalmol. Vis. Sci. 1998; 39: 120-33.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Эко-Вектор", 2016



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86503 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80630 от 15.03.2021 г
.



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах