Inion Sulfocation Membranes Plasticized with Propylene Carbonate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The rapidly developing field of portable energy sources requires the search and development of effective materials for such devices. To improve the safety of the most common metal-ion batteries (lithium- and sodium-ion), instead of a liquid electrolyte, it is proposed to use a gel-polymer electrolyte with unipolar conductivity based on a Nafion-like electrolyte (Inion), plasticized with aprotic solvents. The work presents the results of a study of the thermal stability, molecular structure and supramolecular packing, as well as ionic conductivity of the Inion membrane in lithium and sodium forms, plasticized with propylene carbonate, using methods of simultaneous thermal analysis, IR spectroscopy, small-angle X-ray scattering and impedance spectroscopy.

Full Text

Restricted Access

About the authors

R. R. Kayumov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: shmygleval@mail.ru
Russian Federation, Chernogolovka

A. A. Lochina

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: shmygleval@mail.ru
Russian Federation, Chernogolovka; Dolgoprudny

A. N. Lapshin

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: shmygleval@mail.ru
Russian Federation, Chernogolovka

A. V. Bakirov

Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences; Kurchatov Institute

Email: shmygleval@mail.ru
Russian Federation, Moscow; Moscow

L. V. Shmygleva

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: shmygleval@mail.ru
Russian Federation, Chernogolovka

References

  1. Elbinger L., Enke M., Ziegenbalg N., Brendel J.C., Schubert U.S. // Energy Storage Mater. 2024. V. 65. P. 103063. doi: 10.1016/j.ensm.2023.103063.
  2. Gao X., Yang J., Xu Z., Nuli Y., Wang J. // Energy Storage Mater. 2023. V. 54. P. 382. doi: 10.1016/j.ensm.2022.10.046.
  3. Liu Y., Zhao C., Du J., Zhang X., Chen A., Zhang Q. // Small. 2023. V. 19. doi: 10.1002/smll.202205315.
  4. Sun B., Sun Z., Yang Y., Huang X.L., Jun S.C., Zhao C., Xue J., Liu S., Liu H.K., Dou S.X. // ACS Nano. 2024. V. 18. P. 28. doi: 10.1021/acsnano.3c08240.
  5. Aslfattahi N., Samylingam L., Kiai M.S., Kadirgama K., Kulish V., Schmirler M., Said Z. // J. Energy Storage. 2023. V. 72. P. 108781. doi: 10.1016/j.est.2023.108781.
  6. Doyle M., Fuller T.F., Newman J. // Electrochim. Acta. 1994. V. 39. P. 2073. doi: 10.1016/0013-4686(94)85091-7.
  7. Zhang H., Li C., Piszcz M., Coya E., Rojo T., Rodriguez-Martinez L.M., Armand M., Zhou Z. // Chem. Soc. Rev. 2017. V. 46. P. 797. doi: 10.1039/c6cs00491a.
  8. Gao J., Sun C., Xu L., Chen J., Wang C., Guo D., Chen H. // J. Power Sources. 2018. V. 382. P. 179. doi: 10.1016/j.jpowsour.2018.01.063.
  9. Cao C., Wang H., Liu W., Liao X., Li L. // Int. J. Hydrogen Energy. 2014. V. 39. P. 16110. doi: 10.1016/j.ijhydene.2013.12.119.
  10. Liang H.Y., Qiu X.P., Zhang S.C., Zhu W.T., Chen L.Q. // J. Appl. Electrochem. 2004. V. 34. P. 1211. doi: 10.1007/s10800-004-1767-0.
  11. Nicotera I., Simari C., Agostini M., Enotiadis A., Brutti S. // J. Phys. Chem. C. 2019. V. 123. P. 27406. doi: 10.1021/acs.jpcc.9b08826.
  12. Simari C., Tuccillo M., Brutti S., Nicotera I. // Electrochim. Acta. 2022. V. 410. P. 139936. doi: 10.1016/j.electacta.2022.139936.
  13. Воропаева Д.Ю., Новикова С.А., Ярославцев А.Б. // Успехи химии. 2020. Т. 89. С. 1132..(англоязычная версия: Voropaeva D.Y., Novikova S.A., Yaroslavtsev A.B. // Russ. Chem. Rev. 2020. V. 89. P. 1132. doi: 10.1070/rcr4956)
  14. Kulova T., Skundin A., Chekannikov A., Novikova S., Stenina I., Kudryashova Y., Sinenko G. // Int. J. Electrochem. Sci. 2019. V. 14. P. 1451. doi: 10.20964/2019.02.10.
  15. Kulova T., Skundin A., Chekannikov A., Novikova S., Voropaeva D., Yaroslavtsev A. // Batteries. 2018. V. 4. P. 61. doi: 10.3390/batteries4040061.
  16. Воропаева Д.Ю., Ярославцев А.Б. // Мембраны и мембранные технологии. 2022. T. 12. С. 315. (англоязычная версия: Voropaeva D.Y., Yaroslavtsev A.B. // Membr. Membr. Technol. 2022. V. 4. P. 276. doi: 10.1134/S2517751622040102)
  17. Novikova S.A., Voropaeva D.Y., Yaroslavtsev A.B. // Inorg. Mater. 2022. V. 58. P. 333. doi: 10.1134/S0020168522040124.
  18. Yan T., Li F., Xu C., Fang H.-T. // Electrochim. Acta. 2022. V. 410. P. 140004. doi: 10.1016/j.electacta.2022.140004.
  19. Voropaeva D.Y., Safronova E.Y., Novikova S.A., Yaroslavtsev A.B. // Mendeleev Commun. 2022. V. 32. P. 287. doi: 10.1016/j.mencom.2022.05.001.
  20. Kayumov R.R., Radaeva A.P., Nechaev G.V., Lochina A.A., Lapshin A.N., Bakirov A.V., Glukhov A.A., Shmygleva L.V. // Solid State Ionics. 2023. V. 399. P. 116294. doi: 10.1016/j.ssi.2023.116294.
  21. Каюмов Р.Р., Радаева А.П., Крупина А.А., Тарусина А.А., Лапшин А.Н., Шмыглева Л.В. // Хим. Физика. 2023. Т. 42. С. 23. (англоязычная версия: Kayumov R.R., Radaeva A.P., Krupina A.A., Tarusina K.A., Lapshin A.N., Shmygleva L. V. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 801. doi: 10.1134/S1990793123040097).
  22. Krupina A.A., Kayumov R.R., Nechaev G. V, Lapshin A.N., Shmygleva L. V // Membranes. 2022. V. 12. P. 840. doi: 10.3390/membranes12090840.
  23. Voropaeva D., Novikova S., Stenina I., Yaroslavtsev A. // Polymers. 2023. V. 15. P. 4340. doi: 10.3390/polym15224340.
  24. Bushkova O. V, Sanginov E.A., Chernyuk S.D., Kayumov R.R., Shmygleva L.V., Dobrovolsky Yu.A., Yaroslavtsev A.B. // Membr. Membr. Technol. 2022. V. 4. P. 433. doi: 10.1134/S2517751622070010.
  25. Voropaeva D., Novikova S., Xu T., Yaroslavtsev A. // J. Phys. Chem. B. 2019. V. 123. P. 10217. doi: 10.1021/acs.jpcb.9b08555.
  26. Prikhno I.A., Ivanova K.A., Don G.M., Yaroslavtsev A.B. // Mendeleev Commun. 2018. V. 28. P. 657. doi: 10.1016/j.mencom.2018.11.033.
  27. Mugtasimova K.R., Melnikov A.P., Galitskaya E.A., Ryzhkin I.A., Ivanov D.A., Sinitsyn V. V. // Key Eng. Mater. 2020. V. 869. P. 367. doi: 10.4028/ href='www.scientific.net/KEM.869.367' target='_blank'>www.scientific.net/KEM.869.367.
  28. Kusoglu A., Weber A.Z. // Chem. Rev. 2017. V. 117. P. 987. doi: 10.1021/acs.chemrev.6b00159.
  29. Sanginov E.A., Kayumov R.R., Shmygleva L. V., Lesnichaya V.A., Karelin A.I., Dobrovolsky Y.A. // Solid State Ionics. 2017. V. 300. P. 26. doi: 10.1016/j.ssi.2016.11.017.
  30. Doyle M., Lewittes M.E., Roelofs M.G., Perusich S.A., Lowrey R.E. // J. Memb. Sci. 2001. V. 184. P. 257. doi: 10.1016/S0376-7388(00)00642-6.
  31. Voropaeva D., Safronova E., Novikova S., Yaroslavtsev A. // J. Phys. Chem. C. 2024. V. 128. P. 4143. doi: 10.1021/acs.jpcc.3c07673
  32. Каюмов Р.Р., Шмыглева Л.В., Евщик Е.Ю., Сангинов Е.А., Попов Н.А., Бушкова О.В., Добровольский Ю.А. // Электрохимия. 2021. Т. 57. С. 507. (англоязычная версия: Kayumov R.R., Shmygleva L. V., Evshchik E.Y., Sanginov E.A., Popov N.A., Bushkova O.V., Dobrovolsky Y.A. // Russ. J. Electrochem. 2021. V. 57. P. 911. doi: 10.1134/s1023193521060045)
  33. Сангинов Е.А., Евщик Е.Ю., Каюмов Р.Р., Добровольский Ю.А. // Электрохимия. 2015. Т. 51. С. 1115. (англоязычная версия: Sanginov E.A., Evshchik E.Y., Kayumov R.R., Dobrovol’skii Y.A. // Russ. J. Electrochem. 2015. V. 51. P. 986. doi: 10.1134/S1023193515100122).
  34. Voropaeva D.Y., Novikova S.A., Kulova T.L., Yaroslavtsev A.B. // Solid State Ionics. 2018. V. 324. P. 28. doi: 10.1016/j.ssi.2018.06.002.
  35. Sanginov E.A., Borisevich S.S., Kayumov R.R., Istomina A.S., Evshchik E.Y., Reznitskikh O.G., Yaroslavtseva T.V., Melnikova T.I., Dobrovolsky Y.A., Bushkova O.V. // Electrochim. Acta. 2021. V. 373. P. 137914. doi: 10.1016/j.electacta.2021.137914.
  36. Ponrouch A., Monti D., Boschin A., Steen B., Johansson P., Palacín M.R. // J. Mater. Chem. A. 2015. V. 3. P. 22. doi: 10.1039/c4ta04428b.
  37. Eshetu G.G., Elia G.A., Armand M., Forsyth M., Komaba S., Rojo T., Passerini S. // Adv. Energy Mater. 2020. V. 10. P. 2000093. doi: 10.1002/aenm.202000093.
  38. Li Z.-Y., Li Z., Fu J.-L., Guo X. // Rare Met. 2023. V. 42. P. 1. doi: 10.1007/s12598-022-02132-9.
  39. Lai H., Lu Y., Zha W., Hu Y., Zhang Y., Wu X., Wen Z. // Energy Storage Mater. 2023. V. 54. P. 478. doi: 10.1016/j.ensm.2022.10.032
  40. Gebert F., Knott J., Gorkin III R., Chou S.L., Dou S.X. // Energy Storage Mater. 2021. V. 36. P. 10. doi: 10.1016/j.ensm.2020.11.030
  41. Swiderska-Mocek A., Jakobczyk P., Lewandowski A. // J. Solid State Electrochem. 2017. V. 21. P. 2825. doi: 10.1007/s10008-017-3609-0.
  42. Qin M., Zeng Z., Cheng S., Xie J. // Interdiscip. Mater. 2023. V. 2. P. 308. doi: 10.1002/idm2.12077.
  43. Noerochim L., Prabowo R.S., Widyastuti W., Susanti D., Subhan A., Idris N.H. // Batteries. 2023. V. 9. P. 38. doi: 10.3390/batteries9010038.
  44. Ponrouch A., Dedryvère R., Monti D., Demet A.E., Ateba Mba J.M., Croguennec L., Masquelier C., Johansson P., Palacín M.R. // Energy Environ. Sci. 2013. V. 6. P. 2361. doi: 10.1039/c3ee41379a.
  45. Ponrouch A., Marchante E., Courty M., Tarascon J.-M., Palacín M.R. // Energy Environ. Sci. 2012. V. 5. P. 8572. doi: 10.1039/c2ee22258b.
  46. Shakourian-Fard M., Kamath G., Smith K., Xiong H., Sankaranarayanan S.K.R.S. // J. Phys. Chem. C. 2015. V. 119. P. 22747. doi: 10.1021/acs.jpcc.5b04706.
  47. Kayumov R.R., Sanginov E.A., Shmygleva L. V., Radaeva A.P., Karelin A.I., Zyubin A.S., Zyubina T.S., Anokhin D. V., Ivanov D.A., Dobrovolsky Y.A. // J. Electrochem. Soc. 2019. V. 166. P. F3216. doi: 10.1149/2.0261907jes.
  48. Istomina A.S., Yaroslavtseva T. V., Reznitskikh O.G., Kayumov R.R., Shmygleva L. V., Sanginov E.A., Dobrovolsky Y.A., Bushkova O. V. // Polymers. 2021. V. 13. doi: 10.3390/polym13071150.
  49. Su L., Darling R.M., Gallagher K.G., Xie W., J.L., Badel A.F., Barton J.L., Cheng K.J., Balsara N.P., Moore J.S., et al. // J. Electrochem. Soc. 2016. V. 163. P. A5253. doi: 10.1149/2.03211601jes.
  50. Feldheim D.L., Lawson D.R., Martin C.R. // J. Polym. Sci. Part B Polym. Phys. 1993. V. 31. P. 953. doi: 10.1002/polb.1993.090310805.
  51. Ikezawa Y., Ariga T. // Electrochim. Acta. 2007. V. 52. P. 2710. doi: 10.1016/j.electacta.2006.09.050.
  52. Захарова Ю.А., Сергеев В.Г. // Мембраны и мембранные технологии. 2023. T. 13. С. 194. (англоязычная версия: Zakharova Y.A., Sergeyev V.G. // Membr. Membr. Technol. 2023. V. 5. P. 168. doi: 10.1134/S2517751623030095)
  53. Karelin A.I., Kayumov R.R., Sanginov E.A., Dobrovolsky Y.A. // Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2017. V. 178. P. 94. doi: 10.1016/j.saa.2017.01.062.
  54. Gruger A., Régis A., Schmatko T., Colomban P. // Vib. Spectrosc. 2001. V. 26. P. 215. doi: 10.1016/S0924-2031(01)00116-3.
  55. Liang Z., Chen W., Liu J., Wang S., Zhou Z., Li W., Sun G., Xin Q. // J. Memb. Sci. 2004. V. 233. P. 39. doi: 10.1016/j.memsci.2003.12.008.
  56. Карелин А.Е., Каюмов Р.Р., Сангинов Е.А., Добровольский Ю.А. // Мембраны и мембранные технологии. 2016. T. 6. С. 366. (англоязычная версия: Karelin A.I., Kayumov R.R., Sanginov E.A., Dobrovolsky Y.A. // Pet. Chem. 2016. V. 56. P. 1020. doi: 10.1134/S0965544116110074)
  57. Mochizuki T., Kakinuma K., Uchida M., Deki S., Watanabe M., Miyatake K. // ChemSusChem. 2014. V. 7. P. 729. doi: 10.1002/cssc.201301322.
  58. Tsao C.-S., Chang H.-L., Jeng U.-S., Lin J.-M., Lin T.-L. // Polymer. 2005. V. 46. P. 8430. doi: 10.1016/j.polymer.2005.06.010.
  59. Haubold H.-G., Vad T., Jungbluth H., Hiller P. // Electrochim. Acta. 2001. V. 46. P. 1559. doi: 10.1016/S0013-4686(00)00753-2.
  60. Mensharapov R., Ivanova N., Spasov D., Grigoriev S., Fateev V. // Polymers. 2022. V. 14. P. 4395. doi: 10.3390/polym14204395.
  61. Lu F., Gao X., Yan X., Gao H., Shi L., Jia H., Zheng L. // ACS Appl. Mater. Interfaces. 2013. V. 5. P. 7626. doi: 10.1021/am401940y.
  62. Mazzapioda L., Lo Vecchio C., Danyliv O., Baglio V., Martinelli A., Navarra M.A. // Polymers. 2020. V. 12. P. 2019. doi: 10.3390/polym12092019.
  63. da Silva J.S., Carvalho S.G.M., da Silva R.P., Tavares A.C., Schade U., Puskar L., Fonseca F.C., Matos B.R. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 13764. doi: 10.1039/D0CP01864C.
  64. Roche E.J., Pineri M., Duplessix R., Levelut A.M. // J. Polym. Sci. Polym. Phys. Ed. 1981. V. 19. P. 1. doi: 10.1002/pol.1981.180190101.
  65. Fujimura M., Hashimoto T., Kawai H. // Macromolecules. 1981. V. 14. P. 1309. doi: 10.1021/ma50006a032.
  66. Mazzapioda L., Piccolo F., Del Giudice A., Silvestri L., Navarra M.A. // Mater. Renew. Sustain. Energy. 2024. V. 13. P. 59. doi: 10.1007/s40243-023-00249-0.
  67. Yeo R.S. // Polymer (Guildf). 1980. V. 21. P. 432. doi: 10.1016/0032-3861(80)90015-4.
  68. Moore R.B., Martin C.R. // Macromolecules. 1988. V. 21. P. 1334. doi: 10.1021/ma00183a025.
  69. Matos B.R. // J. Electroanal. Chem. 2020. V. 871. P. 114357. doi: 10.1016/j.jelechem.2020.114357.
  70. Paddison S.J., Bender G., Kreuer K.D., Nicoloso N., Zawodzinski T.A. // J. New Mater. Electrochem. Syst. 2000. V. 3 P. 291.
  71. Lu Z., Polizos G., Macdonald D.D., Manias E. // J. Electrochem. Soc. 2008. V. 155. P. B163. doi: 10.1149/1.2815444
  72. Lu Z., Lanagan M., Manias E., Macdonald D. // ECS Trans. 2010. V. 28. P. 95. doi: 10.1149/1.3502448.
  73. Thirmal C., Mohan P.N., Suresh G., Viveka T.L., Raju K.J., Vishwam T. // Mater. Today Proc. 2023. V. 92. P. 655. doi: 10.1016/j.matpr.2023.04.138
  74. Paddison S.J., Reagor D.W., Zawodzinski Jr T.A. // J. Electroanal. Chem. 1998. V. 459. P. 91. doi: 10.1016/S0022-0728(98)00321-0.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. CTA and ionic current curves of Li-Inion (a) and Li-Inion/PC samples (b); TGA curves of Inion membrane in lithium and sodium forms (c)

Download (2MB)
3. Fig. 2. Overview IR NIR spectra of Inion and Nafion membranes (a) and contours of the ν(SO) and ν(CF2) oscillation bands (b)

Download (1MB)
4. Fig. 3. MURR curves: (a) original curves of H-Inion and kapton; (b) curves of Inion samples in different cationic forms taking into account kapton

Download (1MB)
5. Fig. 4. (a) Equivalent scheme of impedance spectra: Rm - sample resistance, Cg - geometric capacitance of the measuring cell, ZW - Warburg element; (b) and (c) Impedance hodographs at different temperatures (points - experimental data, lines - approximation of impedance spectra by the equivalent scheme); (d) temperature dependences of specific ionic conductivity, geometric capacitance and dielectric permittivity of Na-ion/PC

Download (91KB)

Copyright (c) 2024 Russian Academy of Sciences