Selective Permeability of a Homogeneous Bilayer Membrane MF-4SK with a Selective Layer of Cationic Polyelectrolyte in a Mixed Solution of Calcium Chloride and Sodium Chloride

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New homogeneous bilayer membranes with a thin anion-exchange layer based on copolymer of N,N-diallyl-N,N-dimethylammonium chloride (DADMAC) and ethyl methacrylate (EMA) on the surface of sulfated polytetrafluoroethylene membrane-substrate have been developed. The general and partial current–voltage characteristics, external and intra-diffusion limiting currents were theoretically and experimentally investigated. The parameters of specific conductivity, sorption and diffusion permeability of individual membrane layers, as well as effective transfer numbers and specific selectivity of bilayer homogeneous membranes in mixed solutions of calcium chloride and sodium chloride have been determined.

It was found that depositing a thin anion-exchange layer of DADMAC and EMA on the homogeneous membrane can increase the selectivity of the membrane to single-charged cations. The specific selectivity of bilayer membrane MK-2 to sodium cations increases by more than 6 times (from 0.77 to 4.78) relative to the original homogeneous membrane-substrate MF-4SC.

Verification of the obtained experimental data in the framework of a four-layer mathematical model with quasi-equilibrium boundary conditions for the system diffusion layer (I)/modifying layer (II)/membrane-substrate (III)/diffusion layer (IV) in ternary solutions of NaCl+CaCl2 has been carried out.

Full Text

Restricted Access

About the authors

A. R. Achoh

Kuban State University

Author for correspondence.
Email: achoh-aslan@mail.ru
Russian Federation, Krasnodar, 149, Stavropolskaya St., 350040

D. A. Bondarev

Kuban State University

Email: achoh-aslan@mail.ru
Russian Federation, Krasnodar, 149, Stavropolskaya St., 350040

S. S. Melnikov

Kuban State University

Email: achoh-aslan@mail.ru
Russian Federation, Krasnodar, 149, Stavropolskaya St., 350040

V. I. Zabolotsky

Kuban State University

Email: achoh-aslan@mail.ru
Russian Federation, Krasnodar, 149, Stavropolskaya St., 350040

References

  1. Güler E., van Baak W., Saakes M., Nijmeijer K. // J. Membrane Science. 2014. V. 455. P. 254–270.
  2. Апель П.Ю., Бобрешова О.В., Волков А.В., и др. // Мембраны и мембранные технологии. 2019. Т. 9. С. 59–80.
  3. Grimm J., Bessarabov D., Sanderson R. // Desalination. 1998. V. 115. P. 285–294.
  4. Xu T. W., Huang C. H. // AIChE J. 2008. V. 54. P. 3147–3159.
  5. Tang W., He D., Zhang C., Kovalsky P., Waite T.D. //Water Res. 2017. V. 120. P. 229–237.
  6. Li X.F.,. Zhang H.M, Mai Z.S. et al. // Energy Environ. Sci. 2011. V. 4. P. 1147–1160.
  7. Qian Y., Huang L., Pan Y., et al. // Sep. Purif. Technol. 2018. V. 192. P. 78–87.
  8. Qiu Y., Park K. // Adv. Drug Delivery Rev. 2012. V. 64. P. 49–60.
  9. Титова Т.С., Юрова П.А., Кулешова В.А. // Мембраны и мембранные технологии. 2021. Т. 11. C. 460–468.
  10. Ter Veen W.R., Koene L. // Metal Finishing. 2003. V. 101. P. 17–27
  11. Zhou Y., Yan H., Wang X., et al. // J. Membrane Science. 2016. V. 520. P. 345–353.
  12. Nir O., Sengpiel R.G., Wessling M. // Chem. Eng. J. 2018. V. 346. P. 640–648.
  13. Boucher M., Turcotte N., Guillemette V., et al. // Hydrometallurg. 1997. V. 45. P. 137–160.
  14. Díaz Nieto C., Palacios N., Verbeeck K., et al. // Water Research. 2019. V. 154 P. 117–124.
  15. Lacour S., Deluchat V., Bollinger J.C., Serpaud B. // Talanta. 1998. V. 46. P. 999–1009.
  16. Горобченко А.Д., Гиль В.В., Никоненко В.В., Шарафан М.В. // Мембраны и мембранные технологии. 2022. Т. 12. С. 480–490.
  17. Sata T. // Royal Society of chemistry. 2007. V. 15. P. 68.
  18. Zabolotskii V., Sheldeshov N., Melnikov S. // J. Appl. Electrochem. 2013. V. 43. P. 1117–1129.
  19. Sata T. // J. Membrane Science. 1994. V. 93. P. 117–135.
  20. Abdu S., Wessling M. // ACS Applied Materials and Interfaces. 2014. V. 3. P. 1843–1854.
  21. Wang W., Liu R., Tan M., et al. // J. Membrane Science. 2019. V. 582. P. 236–245.
  22. Shkirskaya S., Kolechko M., Kononenko N. // Curr. Appl. Phys. 2015. V. 15. P. 1587–1592.
  23. Sata T., Izuo R. // J. Membrane Science. 1989. V. 45. P. 209–224.
  24. Golubenko D.V., Karavanova Yu.A., Melnikov S.S., et al. // J. Membrane Science. 2018. V. 563. P. 777–784.
  25. Bondarev D., Melnikov S., Zabolotsky V. // J. Membrane Science. 2023. V. 675. P. 121510.
  26. Nafion(tm) membranes and dispersions, URL: https://www.chemours.com/Nafion/en_US/index.html
  27. Заболоцкий В.И., Шельдешов Н.В., Шарафан М.В. // Электродимия. 2006. Т. 42. С. 1494.
  28. Заболоцкий В. И., Гнусин Н. П., Шеретова Г. М. // Журн. физ. химии. 1985. Т. 59. С. 2467–2471.
  29. Berezina N.P., Kononenko N.A., Dyomina O.A., Gnusin N.P. // Colloid Inter-face Sci. 2008. V. 139. P. 3.
  30. Ачох, А.Р., Заболоцкий В.И., Лебедев К.А., Шарафан М.В., Ярославцев А.Б. // Мембраны и мембранные технологии. 2021. Т. 11. С. 58–78.
  31. Demina O.A., Shkirskaya S.A., Kononenko N.A., Nazyrova E.V. // Russ. J. Electrochem. 2016. V. 52. P. 291.
  32. Nightingale E.R. // J. Phys. Chem. 1959. V. 109. № 43. P. 1381.
  33. Afanas’ev V.N., Tyunina E.Yu. // Russian Journal of General Chemistry. 2004. № 5. V. 74. P. 673.
  34. Zavitsas A.A. // J. Phys. Chem. 2005. V. 109. № 43. P. 20636.
  35. Sarapulova V.V., Titorova V.D., Nikonenko V.V., Pismenskaya N.D. // Membranes and Membrane Technologies. 2019. V. 1. P. 168–182.
  36. Gorobchenko A., Mareev S., Vikonenko V. // Int. J. Mol. Sci. 2022, 23(9), 4711; https://doi.org/10.3390/ijms23094711

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Chemical structure of the cation-exchange membrane-substrate MF-4SK (a) and anion-exchange modifying layer MA-1 (b).

Download (45KB)
3. Fig. 2. IR spectrum of MK-2 bilayer membrane from the side of the cation-exchange layer (1) and from the side of the anion-exchange layer (2).

Download (74KB)
4. Fig. 3. Dependence of integral diffusion permeability of anion-exchange membrane MA-1 on electrolyte concentration: 1 - NaCl; 2 - CaCl2.

Download (63KB)
5. Fig. 4. Dependence of specific electrical conductivity of MA-1 membrane on electrolyte concentration: 1 - NaCl; 2 - CaCl2.

Download (63KB)
6. Fig. 5. Ion exchange and Donnan sorption isotherms in the membrane/ternary solution system CaCl2 + NaCl with a total concentration of 0.03 mol-eq/L. Markers show experimental data: 1 - MF-4KS, 2 - MA-1; the lines show the calculation according to Equations 3 and 4.

Download (85KB)
7. Fig. 6. General VAC and partial currents on water dissociation products of bilayer homogeneous membranes in a solution of 0.015 mol-eq/l NaCl and 0.015 mol-eq/l CaCl2 at a membrane disc rotation speed of 100 rpm: 1, 4 - MF-4SC; 2, 5- MK-1 with a modifying film thickness of 6 μm; 3, 6 - MK-2 with a modifying film thickness of 24 μm.

Download (136KB)
8. Fig. 7. Dependence of the limiting current density on the square root of the angular velocity of the TMD in a mixed solution of 0.015 mol-eq/L NaCl and 0.015 mol-eq/L CaCl2. The dotted line shows the values of the limiting current density calculated from formula 7. Markers show experimental values of limiting currents found by the tangent method for membranes: 1 - MF-4SC; 2 - MK-1; 3 - MK-2.

Download (80KB)
9. Fig. 8. Dependence of the specific selectivity coefficient PNa+/Ca2+ on the dimensionless electric current density in a mixed solution of 0.015 mol-eq/l NaCl and 0.015 mol-eq/l CaCl2 at a membrane disc rotation speed of 100 rpm: the markers represent experimental data, the solid line shows the calculation by the four-layer mathematical model [30], the dotted line shows the limiting value of the selective permeability coefficient calculated by Equation 11.

Download (106KB)

Copyright (c) 2024 Russian Academy of Sciences