Estimation of Polyelectrolyte Ionic Conductivity Using Molecular Dynamics Method
- Authors: Osherov P.M.1, Evshchik E.Y.2,3, Shikhovtseva A.V.2, Faizullin R.Z.4, Khamitov E.M.5, Borisevich S.S.2
-
Affiliations:
- Institute of Intelligent Cybernetic Systems, National Research Nuclear University „MEPhI“
- Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences
- Moscow Institute of Physics and Technology
- Energy Technology Center, Skolkovo Institute of Science and Technology, territory of Skolkovo Innovation Center
- Ufa Institute of Chemistry, Ural Federal Research Center of RAS
- Issue: Vol 15, No 1 (2025)
- Pages: 63-75
- Section: Articles
- URL: https://ruspoj.com/2218-1172/article/view/685293
- DOI: https://doi.org/10.31857/S2218117225010051
- EDN: https://elibrary.ru/LANVWQ
- ID: 685293
Cite item
Abstract
This paper describes the procedure of developing a protocol for theoretical evaluation of the ionic conductivity of two polyelectrolyte systems consisting of oligomers simulating the lithium form of the Nafion-115 membrane plasticized in one case with dimethyl sulfoxide and in the other case with propylene carbonate. Model systems for theoretical calculations were constructed according to the values of the degree of swelling of the membrane in the mentioned solvents determined experimentally. The protocol for molecular dynamic simulations was selected taking into account the peculiarities of the structure and physicochemical properties of the components of the investigated systems. The analysis of molecular dynamic simulations trajectories included the evaluation of radial distribution functions and self-diffusion coefficients. The author’s code written in the Python language was used to calculate ionic conductivity. The results of the theoretical calculations are in agreement with the experimental data. The modeling approach proposed in this work can be used for relatively fast estimation of ionic conductivity in similar electrolyte systems in a close temperature range up to the phase transition boundary.
Full Text

About the authors
P. M. Osherov
Institute of Intelligent Cybernetic Systems, National Research Nuclear University „MEPhI“
Email: liza@icp.ac.ru
Russian Federation, Kashirskoye sh., 31, Moscow, 115409
E. Yu. Evshchik
Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences; Moscow Institute of Physics and Technology
Author for correspondence.
Email: liza@icp.ac.ru
Russian Federation, 1, Ak. Semyonov Avenue, 1, Chernogolovka, Moscow Region, 142432; Institutskiy per., 9., Dolgoprudny, Moscow region, 141701
A. V. Shikhovtseva
Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences
Email: liza@icp.ac.ru
Russian Federation, 1, Ak. Semyonov Avenue, 1, Chernogolovka, Moscow Region, 142432
R. Z. Faizullin
Energy Technology Center, Skolkovo Institute of Science and Technology, territory of Skolkovo Innovation Center
Email: liza@icp.ac.ru
Russian Federation, 30 Bolshoi Blvd. 1, Moscow, 121205
E. M. Khamitov
Ufa Institute of Chemistry, Ural Federal Research Center of RAS
Email: liza@icp.ac.ru
Russian Federation, 71, Oktyabrya Ave., Ufa, Republic of Bashkortostan, 450054
S. S. Borisevich
Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences
Email: liza@icp.ac.ru
Russian Federation, 1, Ak. Semyonov Avenue, 1, Chernogolovka, Moscow Region, 142432
References
- Yoo H.D., Markevich E., Salitra G., Sharon D., Aurbach D. // Mater. Today. 2014. V. 17. P. 110. doi: 10.1016/j.mattod.2014.02.014
- Ding Y., Cano Z.P., Yu A., Lu J., Chen Z. // Electrochem. Energy Rev. 2019. V. 2. P. 1. doi: 10.1007/s41918-018-0022-z
- Yoon J.H., Cho W.-J., Kang T.H., Lee M., Yi G.-R. // Macromol. Res. 2021. V. 29. P. 509. doi: 10.1007/s13233-021-9073-9
- Kinlen P.J., Heider J.E., Hubbard D.E. // Sensors Actuators B Chem. 1994. V. 22. P. 13. doi: 10.1016/0925-4005(94)01254-7
- Luo Q., Zhang H., Chen J., Qian P., Zhai Y. // J. Memb. Sci. 2008. V. 311. P. 98. doi: 10.1016/j.memsci.2007.11.055
- Xi J., Wu Z., Qiu X., Chen L. // J. Power Sources. 2007. V. 166. P. 531. doi: 10.1016/j.jpowsour.2007.01.069
- Kusoglu A., Weber A.Z. // Chem. Rev. 2017. V. 117. P. 987. doi: 10.1021/acs.chemrev.6b00159
- Sanginov E.A., Borisevich S.S., Kayumov R.R., Istomina A.S., Evshchik E.Y., Reznitskikh O.G., Yaroslavtseva T.V., Melnikova T.I., Dobrovolsky Y.A., Bushkova O.V. // Electrochim. Acta. 2021. V. 373. P. 137914. doi: 10.1016/j.electacta.2021.137914
- Yang L., Zeng J., Ding B., Xu C., Lee J.Y. // Adv. Mater. Interfaces. 2016. V. 3. P. 1600660. doi: 10.1002/admi.201600660
- Sanginov E.A., Evshchik E.Y., Kayumov R.R., Dobrovol’skii Y.A. // Russ. J. Electrochem. 2015. V. 51. P. 986. doi: 10.1134/S1023193515100122
- Sanginov E.A., Kayumov R.R., Shmygleva L.V., Lesnichaya V.A., Karelin A.I., Dobrovolsky Y.A. // Solid State Ionics. 2017. V. 300. P. 26. doi: 10.1016/j.ssi.2016.11.017
- Doyle M., Lewittes M.E., Roelofs M.G., Perusich S.A., Lowrey R.E. // J. Memb. Sci. 2001. V. 184. P. 257. doi: 10.1016/S0376-7388(00)00642-6
- Cui S., Liu J., Selvan M.E., Keffer D.J., Edwards B.J., Steele W.V. // J. Phys. Chem. B. 2007. V. 111. P. 2208. doi: 10.1021/jp066388n
- Zhou X., Chen Z., Delgado F., Brenner D., Srivastava R. // J. Electrochem. Soc. 2007. V. 154. P. B82. doi: 10.1149/1.2388735
- Vishnyakov A., Neimark A.V. // J. Phys. Chem. B. 2001. V. 105. P. 9586. doi: 10.1021/jp0102567
- Ohkubo T., Kidena K., Takimoto N., Ohira A. // J. Mol. Model. 2011. V. 17. P. 739. doi: 10.1007/s00894-010-0767-8
- Ohkubo T., Kidena K., Takimoto N., Ohira A. // J. Mol. Model. 2012. V. 18. P. 533. doi: 10.1007/s00894-011-1091-7
- Sun H., Yu M., Li Z., Almheiri S. // J. Chem. 2015. V. 2015. P. 169680. doi: 10.1155/2015/169680
- Jang S.S., Molinero V., Çaǧın T., Goddard W.A. // J. Phys. Chem. B. 2004. V. 108. P. 3149. doi: 10.1021/jp036842c
- Tse Y.-L.S., Herring A.M., Kim K., Voth G.A. // J. Phys. Chem. C. 2013. V. 117. P. 8079. doi: 10.1021/jp400693g
- Burlatsky S., Darling R.M., Novikov D., Atrazhev V.V., Sultanov V.I., Astakhova T.Y., Su L., Brushett F. // J. Electrochem. Soc. 2016. V. 163. P. A2232. doi: 10.1149/2.0461610jes
- Fong K.D., Self J., Diederichsen K.M., Wood B.M., McCloskey B.D., Persson K.A. // ACS Cent. Sci. 2019. V. 5. P. 1250. doi: 10.1021/acscentsci.9b00406
- Fong K.D., Self J., McCloskey B.D., Persson K.A. // Macromolecules. 2021. V. 54. P. 2575. doi: 10.1021/acs.macromol.0c02545
- Schrödinger Release 2021-2: Maestro, Schrödinger, LLC, New York, NY, 2021.
- Kayumov R.R., Shmygleva L.V., Evshchik E.Y., Sanginov E.A., Popov N.A., Bushkova O.V., Dobrovolsky Y.A. // Russ. J. Electrochem. 2021. V. 57. P. 911. doi: 10.1134/S1023193521060045
- Banks J.L., Beard H.S., Cao Y., Cho A.E., Damm W., Farid R., Felts A.K., Halgren T.A., Mainz D.T., Maple J.R., Murphy R., Philipp D.M., Repasky M.P., Zhang L.Y., Berne B.J., Friesner R.A., Gallicchio E., Levy R.M. // J. Comput. Chem. 2005. V. 26. P. 1752. doi: 10.1002/jcc.20292
- Leontyev I., Stuchebrukhov A. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 2613. doi: 10.1039/c0cp01971b
- Blazquez S., Abascal J.L.F., Lagerweij J., Habibi P., Dey P., Vlugt T.J.H., Moultos O.A., Vega C. // J. Chem. Theory Comput. 2023. V. 19. P. 5380. doi: 10.1021/acs.jctc.3c00562 DOI K., Chikasako Y., Kawano S. // Fluid Dyn. Mater. Process. 2015. V. 11. doi: 10.3970/fdmp.2015.011.001
- Brandell D. // Polymer Electrolytes. Molecular dynamics simulations of Li ion and H-conduction in polymer electrolytes. Elsevier, 2010. P. 314–339. doi: 10.1533/9781845699772.1.314
- Raabe G. // Molecular Simulation Studies on Thermophysical Properties: With Application to Working Fluids. Maginn E., ed. Springer Singapore. Singapore, 2017.
- Shim Y. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 28649. doi: 10.1039/c8cp05190a
- Rapaport D.C. // The Art of Molecular Dynamics Simulation. Cambridge University Press, 2004. doi: 10.1017/CBO9780511816581
- Maginn E.J., Messerly R.A., Carlson D.J., Roe D.R., Elliot J.R. // Living J. Comput. Mol. Sci. 2018. V. 1. P. 6324 doi: 10.33011/livecoms.1.1.6324
- Liu H., Maginn E. // J. Chem. Phys. 2011. V. 135. P. 124507
- doi: 10.1063/1.3643124
- Kumar G., Kartha T.R., Mallik B.S. // J. Phys. Chem. C. 2018. V. 122. P. 26315. doi: 10.1021/acs.jpcc.8b06581
- Sarangi S.S., Zhao W., Müller-Plathe F., Balasubramanian S. // ChemPhysChem. 2010. V. 11. P. 2001. doi: 10.1002/cphc.201000111
- France-Lanord A., Grossman J.C. // Phys. Rev. Lett. 2019. V. 122. P. 136001. doi: 10.1103/PhysRevLett.122.136001
- Del Pópolo M.G., Voth G.A. // J. Phys. Chem. B. 2004. V. 108. P. 1744. doi: 10.1021/jp0364699
- Kowsari M.H., Alavi S., Najafi B., Gholizadeh K., Dehghanpisheh E., Ranjbar F. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 8826. doi: 10.1039/c0cp02581j https://github.com/OsherovPM/msd_E_for_ionic_conductivity
- Gebremichael Y., Schrøder T.B., Starr F.W., Glotzer S.C. // Phys. Rev. E. 2001. V. 64. P. 051503. doi: 10.1103/PhysRevE.64.051503
Supplementary files
