Влияние дозы механической активации на синтез полиборфенилсилсилоксанов

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Изучено влияние дозы механической активации на состав и структурные характеристики синтезируемых полиборфенилсилоксанов. При малых дозах активации основным процессом является перемешивание смеси, образование реакционной поверхности и частичная конденсация исходных соединений. При повышении дозы взаимодействие полифенилсилсесквиоксана с борной кислотой протекает по радикальному механизму. Показано, что трех минут активации (D = 2.81 кДж/г) достаточно для синтеза полиборфенилсилоксанов с заданным соотношением Si : B. Увеличение дозы механической активации свыше 4.68 кДж/г приводит к деструкции образующихся полимеров.

全文:

受限制的访问

作者简介

В. Либанов

Дальневосточный федеральный университет

编辑信件的主要联系方式.
Email: libanov.vv@dvfu.ru
俄罗斯联邦, 690950, Владивосток, о. Русский, п. Аякс, 10

А. Капустина

Дальневосточный федеральный университет

Email: libanov.vv@dvfu.ru
俄罗斯联邦, 690950, Владивосток, о. Русский, п. Аякс, 10

А. Артемьянов

Дальневосточный федеральный университет

Email: libanov.vv@dvfu.ru
俄罗斯联邦, 690950, Владивосток, о. Русский, п. Аякс, 10

Н. Шапкин

Дальневосточный федеральный университет

Email: libanov.vv@dvfu.ru
俄罗斯联邦, 690950, Владивосток, о. Русский, п. Аякс, 10

М. Цветнов

Дальневосточный федеральный университет

Email: libanov.vv@dvfu.ru
俄罗斯联邦, 690950, Владивосток, о. Русский, п. Аякс, 10

参考

  1. Fang R.-K., Yin Z.-C., Chen J.-S., Wang G.-W. // Green Chem. Lett. Revs. 2022. V. 15. № 3. P. 519.
  2. Sen S., Barman D., Khan H., Das R., Maiti D. // J. Org. Chem. 2022. V. 87. № 18. P. 12164.
  3. Han G.U., Shin S., Baek Y., Kim D., Lee K., Kim J.G., Lee P.H. // Org. Lett. 2021. V. 23. № 21. P. 8622.
  4. Kubota K., Baba E., Seo T., Ishiyama T., Ito H. // Beilstein J. Org. Chem. 2022. V. 18. P. 855.
  5. Rightmire N.R., Hanusa T.P., Rheingold A.L. // Organometallics. 2014. V. 33. Issue 21. P. 5952–5955.
  6. Hao X., Li X., Li H., Zhang X., Liu X., Guo F. // CrystEngComm. 2022. V. 24. № 32. P. 5697.
  7. Miura Y., Kashiwagi T., Fukuda T., Shichiri A., Shiobara T., Saitow K. // ACS Sustainable Chem. Eng. 2022. V. 10. № 49. P. 16159.
  8. Kryzhanovskii I.N., Temnikov M.N., Anisimov A.A., Ratnikov A.K., Frank I.V., Shishkanov M.V., Andropova U.S., Naumkin A.V., Chistovalov S.M., Muzafarov A.M. // Ind. Eng. Chem. Res. 2024. V. 63. № 5. P. 2153.
  9. Kryzhanovskii I.N., Temnikov M.N., Anisimov A.A., Ratnikov A.K., Frank I.V., Naumkin A.V., Chistovalova S.M., Muzafarov A.M. // Green. Chem. 2024. V. 26. № 11. P. 6656.
  10. Glavinovic M., Krause M., Yang L., McLeod J.A., Liu L., Baines K.M., Friscic T., Lumb J.-P. // Sci. Adv. 2017. V. 3. № 5. e1700149.
  11. Chandrasekhar V., Baskar V., Boomishankar R., Gopal K., Zacchini S., Bickley J.F., Steiner A. // Organometallics. 2003. V. 22. № 18. P. 3710.
  12. Sim Y., Tan D., Ganguly R., Li Y., Garcia F. // Chem. Commun. 2018. V. 54. № 50. P. 6800.
  13. Wang J., Ganguly R., Yongxin L., Diaz J., Soo H.S., Garcia F. // Dalton Trans. 2016. V. 45. № 11. P. 7941.
  14. Махаев В.Д., Петрова Л.А. // Журн. общ. химии. 2017. Т. 87. № 6. С. 881.
  15. Калиновская И.В., Курявый В.Г., Карасев В.Е. // Журн. общ. химии. 2005. Т. 75. № 9. С. 1409.
  16. Tao C.-A., Wang J.-F. // Crystals. 2021. V. 11. № 1. Art. 15.
  17. Stein I., Ruschewitz U. // Zeitschrift anorgan. allgemeine Chem. 2010. V. 636. № 2. P. 400–404.
  18. Yoshida J., Nishikiori S., Kuroda R. // Chemistry – A European Journal. 2009. V. 14. Issue 34. P. 10570.
  19. Bennett T.D., Cheetham A.K. // Acc. Chem. Res. 2014. V. 47. № 5. P. 1555.
  20. Zhang Z., Tao C.-A., Zhao J., Wang F., Huang J., Wang J. // Catalysts. 2020. V. 20. № 9. Art. 1086.
  21. Александров А.И., Кармилов А.Ю., Александров И.А., Чвалун С.Н., Метленкова И.Ю., Тальянова Е.В., Оболонкова Е.С., Прокофьев А.И. // Высокомолек. соед. Б. 2004. Т. 46. № 6. С. 1105.
  22. Александров И.А., Кармилов А.Ю., Шевченко В.Г., Оболонкова Е.С., Александров А.И., Солодовников С.П. // Высокомолек. соед. Б. 2009. Т. 51. № 8. С. 1573.
  23. Бутягин П.Ю., Берлин А.А., Калмансон А.Э., Блюменфельд Л.А. // Высокомолек. соед. 1959. Т. 1. № 6. С. 865.
  24. Дубинская А.М. // Успехи химии. 1999. Т. 68. № 8. С. 708.
  25. Смоляков В.К., Лапшин О.В., Болдырев В.В., Болдырева Е.В. // Журн. физ. химии. 2018. Т. 92. № 12. С. 1963.
  26. Туманов И.А., Ачкасов А.Ф., Мызь С.А., Болдырева Е.В., Болдырев В.В. // Докл. РАН. 2014. Т. 457. № 6. С. 670.
  27. Стрелецкий А.Н., Бутягин П.Ю. // Коллоид. журн. 2013. Т. 75. № 3. С. 373.
  28. Бутягин П.Ю., Повстугар И.В. // Докл. РАН. 2004. Т. 398. №5. С. 635.
  29. Либанов В.В., Капустина А.А., Шапкин Н.П. // Высокомолек. соед. Б. 2022. Т. 64. № 2. С. 116.
  30. Калинина Л.С., Моторина М.А., Никитина Н.И., Хачапуридзе Н.А. Анализ конденсационных полимеров. М.: Химия. 1984.
  31. Павлова С.А., Пахомов В.И., Твердохлебова И.И. // Высокомолек. соед. 1964. Т. 6. № 7. С. 1281.
  32. Бутягин П.Ю. // Успехи химии. 1994. Т. 63. № 12. С. 1031.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependence of the specific surface area of the reaction mixture (1) and the degree of transformation (2) on the activation dose.

下载 (13KB)
3. Fig. 2. IR spectra of the original PFSSO (a) and polyborphenylsiloxanes obtained at 0.5 (b), 3 (c) and 7 (d) min of activation.

下载 (17KB)

版权所有 © Russian Academy of Sciences, 2024