Effect of Characteristics of Polymer Microgel Catalysts on the Efficiency of Interfacial Catalysis

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Effect of the architecture and composition of a hydrophilic microgel catalyst on the rate of interfacial catalytic reaction proceeding at the water/oil interface and involving reagents dissolved in opposite phases is studied using dissipative particle dynamics simulations. It is shown that a decrease in the crosslinking density of the microgel, the existence of a cavity in its architecture, an increase in its size, the incorporation the hydrophobic comonomers into a macromolecule, and a rise in the degree of solubility of a network macromolecule in oil contribute to acceleration of the catalytic reaction due to increase of the area of the water–oil–microgel contact and growth of the number of contacts between reagents and catalytic groups. However, in the case of amphiphilic microgels and microgels soluble in both phases, the acceleration of the reaction is restrained by a low rate of reagents diffusion and a rapid reduction in the concentration of reagents in the vicinity of catalytic sites.

Sobre autores

M. Anakhov

Faculty of Physics, Moscow State University

Email: igor@polly.phys.msu.ru
119991, Moscow, Russia

R. Gumerov

Faculty of Physics, Moscow State University

Email: igor@polly.phys.msu.ru
119991, Moscow, Russia

I. Potemkin

Faculty of Physics, Moscow State University

Autor responsável pela correspondência
Email: igor@polly.phys.msu.ru
119991, Moscow, Russia

Bibliografia

  1. Karg M., Pich A., Hellweg T., Hoare T., Lyon L.A., Crassous J.J., Suzuki D., Gumerov R.A., Schneider S., Potemkin I.I., Richtering W. // Langmuir. 2019. V. 35. № 19. P. 6231.
  2. Anakhov M.V., Gumerov R.A., Potemkin I.I. // Mendeleev Commun. 2020. V. 30. № 5. P. 555.
  3. Richtering W. // Langmuir. 2012. V. 28. № 50. P. 17218.
  4. Li Z., Ngai T. // Nanoscale. 2013. V. 5. № 4. P. 1399.
  5. Wechsler M.E., Stephenson R.E., Murphy A.C., Oldenkamp H.F., Singh A., Peppas N.A. // Biomed. Microdevices. 2019. V. 21. № 2. P. 31.
  6. Dirksen M., Dargel C., Meier L., Brändel T., Hellweg T. // Colloid Polym. Sci. 2020. V. 298. № 6. P. 505.
  7. Van Tran V., Park D., Lee Y.C. // Environ. Sci. Pollut. Res. 2018. V. 25. № 25. P. 24569.
  8. Naseem K., Hussain Farooqi Z., Zia Ur Rehman M., Atiq Ur Rehman M., Ghufran M. // Rev. Chem. Eng. 2019. V. 35. № 2. P. 285.
  9. Kozhunova E.Y., Komarova G.A., Anakhov M.V., Gumerov R.A., Potemkin I.I. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 51. P. 57244.
  10. Wiese S., Spiess A.C., Richtering W. // Angew. Chem. Int. Ed. 2013. V. 52. № 2. P. 576.
  11. Ajmal M., Demirci S., Siddiq M., Aktas N., Sahiner N. // New J. Chem. 2016. V. 40. № 2. P. 1485.
  12. Shah L.A., Haleem A., Sayed M., Siddiq M. // J. Environ. Chem. Eng. 2016. V. 4. № 3. P. 3492.
  13. Borrmann R., Palchyk V., Pich A., Rueping M. // ACS Catal. 2018. V. 8. № 9. P. 7991.
  14. Tan K.H., Xu W., Stefka S., Demco D.E., Kharandiuk T., Ivasiv V., Nebesnyi R., Petrovskii V.S., Potemkin I.I., Pich A. // Angew. Chemie Int. Ed. 2019. V. 58. № 29. P. 9791.
  15. Kleinschmidt D., Fernandes M.S., Mork M., Meyer A.A., Krischel J., Anakhov M.V., Gumerov R.A., Potemkin I.I., Rueping M., Pich A. // J. Colloid Interface Sci. 2020. V. 559. P. 76.
  16. Kleinschmidt D., Nothdurft K., Anakhov M.V., Meyer A.A., Mork M., Gumerov R.A., Potemkin I.I., Richtering W., Pich A. // Mater. Adv. 2020. V. 1. № 8. P. 2983.
  17. Sabadasch V., Dirksen M., Fandrich P., Cremer J., Biere N., Anselmetti D., Hellweg T. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 43. P. 49181.
  18. Dubey N.C., Gaur D., Tripathi B.P. // J. Polym. Sci. 2023.
  19. Gumerov R.A., Rumyantsev A.M., Rudov A.A., Pich A., Richtering W., Möller M., Potemkin I.I. // ACS Macro Lett. 2016. V. 5. № 5. P. 612.
  20. Bochenek S., Camerin F., Zaccarelli E., Maestro A., Schmidt M.M., Richtering W., Scotti A. // Nat. Commun. 2022. V. 13. № 1. P. 3744.
  21. Gumerov R.A., Filippov S.A., Richtering W., Pich A., Potemkin I.I. // Soft Matter. 2019. V. 15. № 19. P. 3978.
  22. Gumerov R.A., Anakhov M.V., Potemkin I.I. // Dokl. Chem. 2023. accepted.
  23. Hoogerbrugge P.J., Koelman J.M.V.A. // Europhys. Lett. 1992. V. 19. № 3. P. 155.
  24. Español P., Warren P. // Europhys. Lett. 1995. V. 30. № 4. P. 191.
  25. Groot R.D., Warren P.B. // J. Chem. Phys. 1997. V. 107. № 11. P. 4423.
  26. Biglione C., Neumann-Tran T.M.P., Kanwal S., Klinger D. // J. Polym. Sci. 2021. V. 59. № 22. P. 2665.
  27. Goicochea A.G., Romero-Bastida M., López-Rendón R. // Mol. Phys. 2007. V. 105. № 17–18. P. 2375.
  28. Thompson A.P., Aktulga H.M., Berger R., Bolintineanu D.S., Brown W.M., Crozier P.S., in ’t Veld P.J., Kohlmeyer A., Moore S.G., Nguyen T.D., Shan R., Stevens M.J., Tranchida J., Trott C., Plimpton S.J. // Comput. Phys. Commun. 2022. V. 271. P. 108171.
  29. Wang H. // Catalysts. 2019. V. 9. № 3. P. 244.
  30. Kaneko S., Kumatabara Y., Shirakawa S. // Org. Biomol. Chem. 2016. V. 14. № 24. P. 5367.
  31. Vianello C., Piccolo D., Lorenzetti A., Salzano E., Maschio G. // Ind. Eng. Chem. Res. 2018. V. 57. № 34. P. 11517.
  32. Schmidt F., Cokoja M. // Green Chem. 2021. V. 23. № 2. P. 708.
  33. Stukowski A. // JOM. 2014. V. 66. № 3. P. 399.
  34. Nayak S., Gan D., Serpe M.J., Lyon L.A. // Small. 2005. V. 1. № 4. P. 416.
  35. Geisel K., Rudov A.A., Potemkin I.I., Richtering W. // Langmuir. 2015. V. 31. № 48. P. 13145.
  36. Voevodin V.V., Antonov A.S., Nikitenko D.A., Shvets P.A., Sobolev S.I., Sidorov I.Y., Stefanov K.S., Voevodin V.V., Zhumatiy S.A. // Supercomput. Front. Innov. 2019. V. 6. № 2. P. 4.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (269KB)
3.

Baixar (1MB)
4.

Baixar (104KB)
5.

Baixar (1MB)
6.

Baixar (103KB)
7.

Baixar (1MB)
8.

Baixar (100KB)
9.

Baixar (1MB)
10.

Baixar (128KB)
11.

Baixar (1MB)
12.

Baixar (104KB)
13.

Baixar (201KB)

Declaração de direitos autorais © М.В. Анахов, Р.А. Гумеров, И.И. Потемкин, 2023