Miniaturization of Nucleic Acid Assemblies in Nanodevice: Nano-Oddities

  • Authors: Keerthana V.1, Metkar S.2, Girigoswami A.3, Girigoswami K.4
  • Affiliations:
    1. Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City
    2. Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute,, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City
    3. Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City
    4. Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute,, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education
  • Issue: Vol 9, No 3 (2024)
  • Pages: 180-192
  • Section: Materials Science and Nanotechnology
  • URL: https://ruspoj.com/2405-4615/article/view/646241
  • DOI: https://doi.org/10.2174/2405461508666230809151727
  • ID: 646241

Cite item

Full Text

Abstract

Abstract:In the past decades, it has been evident that nano miniaturization technology plays a vital role in innovations, biomedical and industrial applications. Most importantly, the use of Lab on chip (LOC) is revolutionizing and highly replacing the use of conventional technologies due to its advantages that include reliability, biocompatibility, tunability, portability, controllability, cost-effective, low time, and energy consumption with more accurate results. The different nucleic acid structures formed by non-classical ways of pairing can result in highly stable structures, known as nano-oddities. These nucleic acid nano-oddities could be fabricated for a wide range of applications with unique properties. This review encompasses the major findings, advances, fabrication, miniaturization, applications, and the future prospects of nucleic acid assemblies in different kinds of nanodevices.

About the authors

Vedhantham Keerthana

Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City

Email: info@benthamscience.net

Sanjay Metkar

Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute,, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City

Email: info@benthamscience.net

Agnishwar Girigoswami

Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City

Email: info@benthamscience.net

Koyeli Girigoswami

Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute,, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education

Author for correspondence.
Email: info@benthamscience.net

References

  1. Yatsunyk LA, Mendoza O, Mergny JL. “Nano-oddities”: Unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices. Acc Chem Res 2014; 47(6): 1836-44. doi: 10.1021/ar500063x PMID: 24871086
  2. Huang PS, Boyken SE, Baker D. The coming of age of de novo protein design. Nature 2016; 537(7620): 320-7. doi: 10.1038/nature19946 PMID: 27629638
  3. Bale JB, Gonen S, Liu Y, et al. Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 2016; 353(6297): 389-94. doi: 10.1126/science.aaf8818 PMID: 27463675
  4. Xavier PL, Chandrasekaran AR. DNA-based construction at the nanoscale: Emerging trends and applications. Nanotechnology 2018; 29(6): 062001. doi: 10.1088/1361-6528/aaa120 PMID: 29232197
  5. Meng HM, Liu H, Kuai H, Peng R, Mo L, Zhang XB. Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem Soc Rev 2016; 45(9): 2583-602. doi: 10.1039/C5CS00645G PMID: 26954935
  6. Wang F, Lu CH, Willner I. From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: Controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem Rev 2014; 114(5): 2881-941. doi: 10.1021/cr400354z PMID: 24576227
  7. Storhoff JJ, Mirkin CA. Programmed materials synthesis with DNA. Chem Rev 1999; 99(7): 1849-62. doi: 10.1021/cr970071p PMID: 11849013
  8. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996; 382(6592): 607-9. doi: 10.1038/382607a0 PMID: 8757129
  9. Alivisatos AP, Johnsson KP, Peng X, et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 1996; 382(6592): 609-11. doi: 10.1038/382609a0 PMID: 8757130
  10. Cassell AM, Scrivens WA, Tour JM. Assembly of DNA/Fullerene hybrid materials. Angew Chem Int Ed 1998; 37(11): 1528-31. doi: 10.1002/(SICI)1521-3773(19980619)37:113.0.CO;2-Q PMID: 29710932
  11. Niemeyer CM, Bürger W, Peplies J. Covalent DNA-streptavidin conjugates as building blocks for novel biometallic nanostructures. Angew Chem Int Ed 1998; 37(16): 2265-8. doi: 10.1002/(SICI)1521-3773(19980904)37:163.0.CO;2-F PMID: 29711452
  12. Coffer JL, Bigham SR, Li X, et al. Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA. Appl Phys Lett 1996; 69(25): 3851-3. doi: 10.1063/1.117126
  13. Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL. DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 1998; 120(48): 12674-5. doi: 10.1021/ja982721s
  14. Braun E, Eichen Y, Sivan U, Ben-Yoseph G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 1998; 391(6669): 775-8. doi: 10.1038/35826 PMID: 9486645
  15. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997; 277(5329): 1078-81. doi: 10.1126/science.277.5329.1078 PMID: 9262471
  16. Liu X, Zhang X. Aptamer-based technology for food analysis. Appl Biochem Biotechnol 2015; 175(1): 603-24. doi: 10.1007/s12010-014-1289-0 PMID: 25338114
  17. Watson JD, Crick FHC. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953; 171(4356): 737-8. doi: 10.1038/171737a0 PMID: 13054692
  18. Hoogsteen K. The structure of crystals containing a hydrogen-bonded complex of 1-methylthymine and 9-methyladenine. Acta Crystallogr 1959; 12(10): 822-3. doi: 10.1107/S0365110X59002389
  19. Felsenfeld G, Davies DR, Rich A. Formation of a three-stranded polynucleotide molecule. J Am Chem Soc 1957; 79(8): 2023-4. doi: 10.1021/ja01565a074
  20. Lyamichev VI, Mirkin SM, Frank-Kamenetskii MD. A pH-dependent structural transition in the homopurine-homopyrimidine tract in superhelical DNA. J Biomol Struct Dyn 1985; 3(2): 327-38. doi: 10.1080/07391102.1985.10508420 PMID: 3917024
  21. Mirkin SM, Lyamichev VI, Drushlyak KN, Dobrynin VN, Filippov SA, Frank-Kamenetskii MD. DNA H form requires a homopurine-homopyrimidine mirror repeat. Nature 1987; 330(6147): 495-7. doi: 10.1038/330495a0 PMID: 2825028
  22. Jain A, Wang G, Vasquez KM. DNA triple helices: Biological consequences and therapeutic potential. Biochimie 2008; 90(8): 1117-30. doi: 10.1016/j.biochi.2008.02.011 PMID: 18331847
  23. Han H, Dervan PB. Sequence-specific recognition of double helical RNA and RNA.DNA by triple helix formation. Proc Natl Acad Sci 1993; 90(9): 3806-10. doi: 10.1073/pnas.90.9.3806 PMID: 7683407
  24. Le Doan T, Perrouault L, Praseuth D, et al. Sequence-specific recognition, photocrosslinking and cleavage of the DNA double helix by an oligo-(α-thymidylate covalently linked to an azidoproflavine derivative. Nucleic Acids Res 1987; 15(19): 7749-60. doi: 10.1093/nar/15.19.7749 PMID: 3671065
  25. Fox K, Rusling D, Broughton-Head V, Brown T. Towards the targeted modulation of gene expression by modified triplex-forming oligonucleotides. Curr Chem Biol 2008; 2(1): 1-10. doi: 10.2174/2212796810802010001
  26. Beal PA, Dervan PB. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science 1991; 251(4999): 1360-3. doi: 10.1126/science.2003222 PMID: 2003222
  27. Durland RH, Kessler DJ, Gunnell S, Duvic M, Hogan ME, Pettitt BM. Binding of triple helix forming oligonucleotides to sites in gene promoters. Biochemistry 1991; 30(38): 9246-55. doi: 10.1021/bi00102a017 PMID: 1892832
  28. Rusling DA, Powers VE, Ranasinghe RT, et al. Four base recognition by triplex-forming oligonucleotides at physiological pH. Nucleic Acids Res 2005; 33(9): 3025-32. doi: 10.1093/nar/gki625 PMID: 15911633
  29. Rusling DA, Brown T, Fox KR. DNA triple-helix formation at target sites containing duplex mismatches. Biophys Chem 2006; 123(2-3): 134-40. doi: 10.1016/j.bpc.2006.04.016 PMID: 16735088
  30. Koshlap KM, Schultze P, Brunar H, Dervan PB, Feigon J. Solution structure of an intramolecular DNA triplex containing an N7-glycosylated guanine which mimics a protonated cytosine. Biochemistry 1997; 36(9): 2659-68. doi: 10.1021/bi962438a PMID: 9054573
  31. Asensio JL, Brown T, Lane AN. Solution conformation of a parallel DNA triple helix with 5′ and 3′ triplex–duplex junctions. Structure 1999; 7(1): 1-11. doi: 10.1016/S0969-2126(99)80004-5 PMID: 10368268
  32. Roberts RW, Crothers DM. Specificity and stringency in DNA triplex formation. Proc Natl Acad Sci 1991; 88(21): 9397-401. doi: 10.1073/pnas.88.21.9397 PMID: 1946351
  33. Rougée M, Faucon B, Mergny JL, et al. Kinetics and thermodynamics of triple-helix formation: Effects of ionic strength and mismatched. Biochemistry 1992; 31(38): 9269-78. doi: 10.1021/bi00153a021 PMID: 1390713
  34. Mergny JL, Sun JS, Rougée M, et al. Sequence specificity in triple helix formation: Experimental and theoretical studies of the effect of mismatches on triplex stability. Biochemistry 1991; 30(40): 9791-8. doi: 10.1021/bi00104a031 PMID: 1911764
  35. Best GC, Dervan PB. Energetics of formation of sixteen triple helical complexes which vary at a single position within a pyrimidine motif. J Am Chem Soc 1995; 117(4): 1187-93. doi: 10.1021/ja00109a001
  36. James PL, Brown T, Fox KR. Thermodynamic and kinetic stability of intermolecular triple helices containing different proportions of C+*GC and T*AT triplets. Nucleic Acids Res 2003; 31(19): 5598-606. doi: 10.1093/nar/gkg782 PMID: 14500823
  37. Yildiz U, Coban B. Novel naphthalimide derivatives as selective G-quadruplex DNA binders. Appl Biochem Biotechnol 2018; 186(3): 547-62. doi: 10.1007/s12010-018-2749-8 PMID: 29671192
  38. Yurke B, Turberfield AJ, Mills AP Jr, Simmel FC, Neumann JL. A DNA-fuelled molecular machine made of DNA. Nature 2000; 406(6796): 605-8. doi: 10.1038/35020524 PMID: 10949296
  39. Chandrasekaran AR, Rusling DA. Triplex-forming oligonucleotides: A third strand for DNA nanotechnology. Nucleic Acids Res 2018; 46(3): 1021-37. doi: 10.1093/nar/gkx1230 PMID: 29228337
  40. Brucale M, Zuccheri G, Samorì B. The dynamic properties of an intramolecular transition from DNA duplex to cytosine–thymine motif triplex. Org Biomol Chem 2005; 3(4): 575-7. doi: 10.1039/B418353N PMID: 15703789
  41. Kolaric B, Sliwa M, Brucale M, et al. Single molecule fluorescence spectroscopy of pH sensitive oligonucleotide switches. Photochem Photobiol Sci 2007; 6(6): 614-8. doi: 10.1039/b618689k PMID: 17549262
  42. Idili A, Vallée-Bélisle A, Ricci F. Programmable pH-triggered DNA nanoswitches. J Am Chem Soc 2014; 136(16): 5836-9. doi: 10.1021/ja500619w PMID: 24716858
  43. Li XM, Song J, Cheng T, Fu PY. A duplex–triplex nucleic acid nanomachine that probes pH changes inside living cells during apoptosis. Anal Bioanal Chem 2013; 405(18): 5993-9. doi: 10.1007/s00216-013-7037-4 PMID: 23695490
  44. Chen Y, Mao C. pH-induced reversible expansion/contraction of gold nanoparticle aggregates. Small 2008; 4(12): 2191-4. doi: 10.1002/smll.200800569 PMID: 19016526
  45. Minero GAS, Wagler PF, Oughli AA, McCaskill JS. Electronic pH switching of DNA triplex reactions. RSC Adv 2015; 5(35): 27313-25. doi: 10.1039/C5RA02628H
  46. Jacobsen MF, Ravnsbæk JB, Gothelf KV. Small molecule induced control in duplex and triplex DNA-directed chemical reactions. Org Biomol Chem 2010; 8(1): 50-2. doi: 10.1039/B919387A PMID: 20024130
  47. Han X, Zhou Z, Yang F, Deng Z. Catch and release: DNA tweezers that can capture, hold, and release an object under control. J Am Chem Soc 2008; 130(44): 14414-5. doi: 10.1021/ja805945r PMID: 18850700
  48. Del Grosso E, Idili A, Porchetta A, Ricci F. A modular clamp-like mechanism to regulate the activity of nucleic-acid target-responsive nanoswitches with external activators. Nanoscale 2016; 8(42): 18057-61. doi: 10.1039/C6NR06026A PMID: 27714163
  49. Liao WC, Riutin M, Parak WJ, Willner I. Programmed pH-responsive microcapsules for the controlled release of CdSe/ZnS quantum dots. ACS Nano 2016; 10(9): 8683-9. doi: 10.1021/acsnano.6b04056 PMID: 27526081
  50. Romoser A, Ritter D, Majitha R, Meissner KE, McShane M, Sayes CM. Mitigation of quantum dot cytotoxicity by microencapsulation. PLoS One 2011; 6(7): e22079. doi: 10.1371/journal.pone.0022079 PMID: 21814567
  51. Li Y, Miao X, Ling L. Triplex DNA: A new platform for polymerase chain reaction - based biosensor. Sci Rep 2015; 5(1): 13010. doi: 10.1038/srep13010 PMID: 26268575
  52. Hégarat N, Novopashina D, Fokina AA, et al. Monitoring DNA triplex formation using multicolor fluorescence and application to insulin-like growth factor I promoter downregulation. FEBS J 2014; 281(5): 1417-31. doi: 10.1111/febs.12714 PMID: 24423253
  53. Liu Z, Mao C. Reporting transient molecular events by DNA strand displacement. Chem Commun 2014; 50(60): 8239-41. doi: 10.1039/C4CC03291H PMID: 24938726
  54. Amodio A, Zhao B, Porchetta A, et al. Rational design of pH-controlled DNA strand displacement. J Am Chem Soc 2014; 136(47): 16469-72. doi: 10.1021/ja508213d PMID: 25369216
  55. Amodio A, Adedeji AF, Castronovo M, Franco E, Ricci F. pH-Controlled assembly of DNA tiles. J Am Chem Soc 2016; 138(39): 12735-8. doi: 10.1021/jacs.6b07676 PMID: 27631465
  56. Wu N, Willner I. pH-Stimulated reconfiguration and structural isomerization of origami dimer and trimer systems. Nano Lett 2016; 16(10): 6650-5. doi: 10.1021/acs.nanolett.6b03418 PMID: 27586163
  57. Liu Z, Li Y, Tian C, Mao C. A smart DNA tetrahedron that isothermally assembles or dissociates in response to the solution pH value changes. Biomacromolecules 2013; 14(6): 1711-4. doi: 10.1021/bm400426f PMID: 23647463
  58. Jung YH, Lee KB, Kim YG, Choi IS. Proton-fueled, reversible assembly of gold nanoparticles by controlled triplex formation. Angew Chem Int Ed 2006; 45(36): 5960-3. doi: 10.1002/anie.200601089 PMID: 16888827
  59. Yan H, Xiong C, Yuan H, Zeng Z, Ling L. Spacer control the dynamic of triplex formation between oligonucleotide-modified gold nanoparticles. J Phys Chem C 2009; 113(40): 17326-31. doi: 10.1021/jp905408q
  60. Guerrini L, McKenzie F, Wark AW, Faulds K, Graham D. Tuning the interparticle distance in nanoparticle assemblies in suspension via DNA-triplex formation: Correlation between plasmonic and surface-enhanced Raman scattering responses. Chem Sci 2012; 3(7): 2262-9. doi: 10.1039/c2sc20031g
  61. Han MS, Lytton-Jean AKR, Mirkin CA. A gold nanoparticle based approach for screening triplex DNA binders. J Am Chem Soc 2006; 128(15): 4954-5. doi: 10.1021/ja0606475 PMID: 16608320
  62. Xiong C, Wu C, Zhang H, Ling L. Gold nanoparticles-based colorimetric investigation of triplex formation under weak alkalic pH environment with the aid of Ag+. Spectrochim Acta A Mol Biomol Spectrosc 2011; 79(5): 956-61. doi: 10.1016/j.saa.2011.04.002 PMID: 21632279
  63. Ihara T, Ishii T, Araki N, Wilson AW, Jyo A. Silver ion unusually stabilizes the structure of a parallel-motif DNA triplex. J Am Chem Soc 2009; 131(11): 3826-7. doi: 10.1021/ja809702n PMID: 19243184
  64. Zhao C, Qu K, Xu C, Ren J, Qu X. Triplex inducer-directed self-assembly of single-walled carbon nanotubes: A triplex DNA-based approach for controlled manipulation of nanostructures. Nucleic Acids Res 2011; 39(9): 3939-48. doi: 10.1093/nar/gkq1347 PMID: 21227925
  65. Ren J, Hu Y, Lu CH, et al. pH-responsive and switchable triplex-based DNA hydrogels. Chem Sci 2015; 6(7): 4190-5. doi: 10.1039/C5SC00594A PMID: 29218185
  66. Hu Y, Guo W, Kahn JS, Aleman-Garcia MA, Willner I. A shape-memory DNA-based hydrogel exhibiting two internal memories. Angew Chem Int Ed 2016; 55(13): 4210-4. doi: 10.1002/anie.201511201 PMID: 26915713
  67. Ojha RP, Tiwari RK. Molecular dynamics simulation study of DNA triplex formed by mixed sequences in solution. J Biomol Struct Dyn 2002; 19(6): 107-26. doi: 10.1080/07391102.2002.10506797 PMID: 12144358
  68. Li Y, Syed J, Sugiyama H. RNA-DNA triplex formation by long noncoding RNAs. Cell Chem Biol 2016; 23(11): 1325-33. doi: 10.1016/j.chembiol.2016.09.011 PMID: 27773629
  69. Winfree E, Liu F, Wenzler LA, Seeman NC. Design and self-assembly of two-dimensional DNA crystals. Nature 1998; 394(6693): 539-44. doi: 10.1038/28998 PMID: 9707114
  70. Liu CP, Wey MT, Chang CC, Kan LS. Direct observation of single molecule conformational change of tight-turn paperclip DNA triplex in solution. Appl Biochem Biotechnol 2009; 159(1): 261-9. doi: 10.1007/s12010-008-8390-1 PMID: 18931945
  71. Heuer-Jungemann A, Liedl T. From DNA tiles to functional DNA materials. Trends Chem 2019; 1(9): 799-814. doi: 10.1016/j.trechm.2019.07.006
  72. Rusling DA, Broughton-Head VJ, Tuck A, et al. Kinetic studies on the formation of DNA triplexes containing the nucleoside analogue 2′-O-(2-aminoethyl)-5-(3-amino-1-propynyl)uridine. Org Biomol Chem 2008; 6(1): 122-9. doi: 10.1039/B713088K PMID: 18075656
  73. Rusling DA, Fox KR. Sequence-specific recognition of DNA nanostructures. Methods 2014; 67(2): 123-33. doi: 10.1016/j.ymeth.2014.02.028 PMID: 24583116
  74. Tumpane J, Kumar R, Lundberg EP, et al. Triplex addressability as a basis for functional DNA nanostructures. Nano Lett 2007; 7(12): 3832-9. doi: 10.1021/nl072512i PMID: 17983251
  75. Rusling DA, Nandhakumar IS, Brown T, Fox KR. Triplex-directed recognition of a DNA nanostructure assembled by crossover strand exchange. ACS Nano 2012; 6(4): 3604-13. doi: 10.1021/nn300718z PMID: 22443318
  76. Liu F, Sha R, Seeman NC. Modifying the surface features of two-dimensional DNA crystals. J Am Chem Soc 1999; 121(5): 917-22. doi: 10.1021/ja982824a
  77. Chandrasekaran AR, Zhuo R. A ‘tile’ tale: Hierarchical self-assembly of DNA lattices. Appl Mater Today 2016; 2: 7-16. doi: 10.1016/j.apmt.2015.11.004
  78. Yamagata Y, Emura T, Hidaka K, Sugiyama H, Endo M. Triple helix formation in a topologically controlled DNA nanosystem. Chemistry 2016; 22(16): 5494-8. doi: 10.1002/chem.201505030 PMID: 26938310
  79. Zheng J, Birktoft JJ, Chen Y, et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 2009; 461(7260): 74-7. doi: 10.1038/nature08274 PMID: 19727196
  80. Liu D, Wang M, Deng Z, Walulu R, Mao C. Tensegrity: Construction of rigid DNA triangles with flexible four-arm DNA junctions. J Am Chem Soc 2004; 126(8): 2324-5. doi: 10.1021/ja031754r PMID: 14982434
  81. Abdallah HO, Ohayon YP, Chandrasekaran AR, et al. Stabilisation of self-assembled DNA crystals by triplex-directed photo-cross-linking. Chem Commun 2016; 52(51): 8014-7. doi: 10.1039/C6CC03695C PMID: 27265774
  82. Wang T, Sha R, Birktoft J, Zheng J, Mao C, Seeman NC. A DNA crystal designed to contain two molecules per asymmetric unit. J Am Chem Soc 2010; 132(44): 15471-3. doi: 10.1021/ja104833t PMID: 20958065
  83. Barone F, Chirico G, Matzeu M, Mazzei F, Pedone F. Triple helix DNA oligomer melting measured by fluorescence polarization anisotropy. Eur Biophys J 1998; 27(2): 137-46. doi: 10.1007/s002490050119 PMID: 10950635
  84. Zhao J, Chandrasekaran AR, Li Q, et al. Post-assembly stabilization of rationally designed DNA crystals. Angew Chem Int Ed 2015; 54(34): 9936-9. doi: 10.1002/anie.201503610 PMID: 26136359
  85. Rajendran A, Endo M, Katsuda Y, Hidaka K, Sugiyama H. Photo-cross-linking-assisted thermal stability of DNA origami structures and its application for higher-temperature self-assembly. J Am Chem Soc 2011; 133(37): 14488-91. doi: 10.1021/ja204546h PMID: 21859143
  86. Nelson LD, Bender C, Mannsperger H, et al. Triplex DNA-binding proteins are associated with clinical outcomes revealed by proteomic measurements in patients with colorectal cancer. Mol Cancer 2012; 11(1): 38. doi: 10.1186/1476-4598-11-38 PMID: 22682314
  87. Rajeswari MR. DNA triplex structures in neurodegenerative disorder, Friedreich’s ataxia. J Biosci 2012; 37(3): 519-32. doi: 10.1007/s12038-012-9219-1 PMID: 22750988
  88. Singh HN, Rajeswari MR. DNA-triplex forming purine repeat containing genes in acinetobacter baumannii and their association with infection and adaptation. Front Cell Infect Microbiol 2017; 7: 250. doi: 10.3389/fcimb.2017.00250 PMID: 28670571
  89. Grayson ACR, Shawgo RS, Johnson AM, et al. BioMEMS review: MEMS technology for physiologically integrated devices. Proc IEEE 2004; 92(1): 6-21. doi: 10.1109/JPROC.2003.820534
  90. Verpoorte E, De Rooij NF. Microfluidics meets MEMS. Proc IEEE 2003; 91(6): 930-53. doi: 10.1109/JPROC.2003.813570
  91. Convery N, Gadegaard N. 30 years of microfluidics. Micro Nano Eng 2019; 2: 76-91. doi: 10.1016/j.mne.2019.01.003
  92. Azizipour N, Avazpour R, Rosenzweig DH, Sawan M, Ajji A. Evolution of biochip technology: A review from Lab-on-a-Chip to Organ-on-a-Chip. Micromachines 2020; 11(6): 599. doi: 10.3390/mi11060599 PMID: 32570945
  93. Metkar SK, Girigoswami K. Diagnostic biosensors in medicine - A review. Biocatal Agric Biotechnol 2019; 17: 271-83. doi: 10.1016/j.bcab.2018.11.029
  94. Jagannathan NR. Potential of Magnetic Resonance (MR) methods in clinical cancer research. In: Biomedical Translational Research. Singapore: Springer 2022; pp. 339-60. doi: 10.1007/978-981-16-4345-3_21
  95. Ghosh S, Girigoswami K, Girigoswami A. Membrane-encapsulated camouflaged nanomedicines in drug delivery. Nanomedicine 2019; 14(15): 2067-82. doi: 10.2217/nnm-2019-0155 PMID: 31355709
  96. Kumar V, Raj SB, Kanakaraj L, et al. Aptamer: A review on it’s in vitro selection and drug delivery system. Int J Appl Pharm 2022; 14: 35-42. doi: 10.22159/ijap.2022v14i2.43594
  97. Sharmiladevi P, Girigoswami K, Haribabu V, Girigoswami A. Nano-enabled theranostics for cancer. Mater Adv 2021; 2(9): 2876-91. doi: 10.1039/D1MA00069A
  98. Agraharam G, Girigoswami A, Girigoswami K. Nanoencapsulated myricetin to improve antioxidant activity and bioavailability: A study on zebrafish embryos. Chemistry 2021; 4(1): 1-17. doi: 10.3390/chemistry4010001
  99. Girigoswami K, Girigoswami A, Murugesan R, Agraharam G. Method and process of nanoformulation of liposomal myricetin and uses thereof Indian Patent 384885, 2021.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers