The correlation between rhythmic changes of body temperature of small passerine birds (Chloris chloris) and non–tidal gravity fluctuation in the 12–30 minute period range

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Previously, a connection between animal activity and deformational changes in the lithosphere was established. We have investigated this phenomenon using the example of the relationship between the body temperature dynamics of males of the common greenfinches (Chloris chloris) and gravimeter data. For a 12-30-minute range of periods, a simultaneous change in the power of the prevailing harmonics of body temperature and gravimeter readings is shown, which indicates the presence of a connection between these processes. It is shown that a stable positive correlation occurs only during the period of bird activity. Therefore, fluctuations in the gravimeter readings in the 1230 minute range of periods can be considered as a marker of an as yet unidentified biotropic environmental factor affecting animal activity.

全文:

受限制的访问

作者简介

M. Diatroptov

A.N. Severtsov Institute for Ecology and Evolution of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: diatrom@inbox.ru
俄罗斯联邦, Moscow

A. Surov

A.N. Severtsov Institute for Ecology and Evolution of the Russian Academy of Sciences

Email: diatrom@inbox.ru

Corresponding Member of the RAS

俄罗斯联邦, Moscow

参考

  1. Lloyd D., Rossi E. Ultradian Rhythms: From Molecules to Mind. Berlin: Springer Science and Business, 2008. 445 p.
  2. Bourguignon C., Storch K.F. Control of rest: activity by a dopaminergic ultradian oscillator and the circadian clock // Front. Neurol. 2017. V. 8. ID 614.
  3. Goh G.H., Maloney S.K., Mark P.J., et al. Episodic ultradian events-ultradian rhythms // Biology (Basel). 2019. V. 8. № 1. ID 15.
  4. Blum I.D., Zhu L., Moquin L., et al. A highly tunable dopaminergic oscillator generates ultradian rhythms of behavioral arousal // Elife. 2014. V. 3. ID e05105.
  5. Chernouss S., Vinogradov A., Vlassova E. Geophysical hazard for human health in the circumpolar auroral belt: Evidence of a relationship between heart rate variation and electromagnetic disturbances // Natural hazards. 2001. V. 23. P. 121–135.
  6. McCraty R., Atkinson M., Stolc V., et al. Synchronization of human autonomic nervous system rhythms with geomagnetic activity in human subjects // International Journal of Environmental Research and Public Health. 2017. V. 14. № 7. P. 770.
  7. Monto S., Palva S., Voipio J., and Palva J.M. Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans // J. Neurosci. 2008. Vol. 28. P. 8268–8272.
  8. Palmer S.J., Rycroft M.J., Cermack M. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface // Surv. Geophys. 2006. Vol. 27. №5. P. 557–595.
  9. Зенченчеко Т.А., Хорсева И.Н., Станкевич А.А. Эффект синхронизации сердечного ритма человека с вариациями геомагнитного поля: существуют ли выделенные частоты? // Биофизика. 2024. T. 69. № 4. С. 915–926.
  10. Диатроптов М.Е., Суров А.В. Периодическая “спонтанная” активность животных определяется квазиритмическим фактором внешней среды? // Докл. РАН. Науки о жизни. 2021. V. 497. № 1. С. 148–151.
  11. Диатроптов М.Е., Панчелюга В.А., Панчелюга М.С., Суров А.В. Околочасовые ритмы температуры тела у млекопитающих и птиц с разным уровнем обмена веществ // Докл. РАН. Науки о жизни. 2020. V. 494. № 1. С. 472–476.
  12. Zenchenko T.A., Khorseva N.I., Breus T.K., et al. Effect of synchronization between millihertz geomagnetic field variations and human heart rate oscillations during strong magnetic storms // Atmosphere. 2025. V. 16. № 2. 219.
  13. Адушкин В.В., Спивак А.А., Харламов В.А. Новый метод изучения собственных колебаний Земли на основе анализа геомагнитных вариаций // Доклады Академии Наук. 2017. Т. 476. №4. С. 452–455.
  14. Шалимов С.Л. О влиянии длиннопериодных колебаний Земли на верхнюю атмосферу // Физика Земли. 1992. № 7. С. 89–94.
  15. Петрова Л.Н. Колебания Земли с периодами 9–57 мин в фоновом сейсмическом процессе и направление потока энергии в области собственного колебания 0S2 // Физика Земли. 2008. № 1. С. 31–43.
  16. Tanimoto T. Continuous free oscillations: Atmosphere-Solid Earth coupling //Annual Review of Earth and Planetary Sciences. 2001. V. 29. № 10. P. 563–584.
  17. Диатроптова М.А., Мясников А.В., Диатроптов М.Е. Связь ультрадианных ритмов температуры тела мелких млекопитающих с напряжениями земной коры // Бюл. экспер. биол. 2024. 177. №1. С. 120–125.
  18. Диатроптов М.Е., Арсеньев Г.Н., Лигун Н.В. и др. Влияние на степень синхронизации ультрадианных ритмов температуры тела мышей гелиогеофизических и атмосферных факторов // Бюл. экспер. биол. 2023. 175. № 3. С. 367–373.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Average correlation coefficient between minute-by-minute changes in body temperature of greenfinches (n=7) and gravimeter readings over the study period. Medians and interquartile range are presented. A – period from January 15 to February 3, 2023, in conditions of keeping birds under natural light; B – period from February 8 to February 27, 2023, under constant light.

下载 (976KB)
3. Fig. 2. Dynamics of the median value of minute-by-minute changes in body temperature in a group of greenfinches (n=7) (Row 1) in comparison with minute-by-minute changes in gravimeter readings (Row 2). A – January 22, 2023, r = 0.17; B – January 26, 2023, r = 0.25; C – January 28, 2023, r = 0.10.

下载 (1MB)
4. Fig. 3. Power spectral density (fast Fourier transform) of body temperature dynamics (Row 1) for a group of greenfinches (n=7) and gravimeter readings (Row 2). A – January 22, 2023; B – January 26, 2023; C – January 28, 2023.

下载 (754KB)

版权所有 © Russian Academy of Sciences, 2025