Experimental studying of vapor explosion triggering during the breakup of a molten salt jet

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents an experimental study using high-speed video recording of the process of vapor explosion on a breakup jet of molten NaCl salt in water. The regimes of jet breakup into large parts, accompanied by the separation of small satellite droplets, have been studied. For the first time, the propagation of a vapor explosion on two large fragments of jet breakup due to spontaneous triggering of the process on a droplet-satellite was reproduced and recorded under laboratory conditions. The possibility of a vapor explosion occurring at the initial stage of the first stage of coarse crushing and mixing of the melt jet is shown.

Full Text

Restricted Access

About the authors

N. V. Vasil’ev

Joint Institute for High Temperatures of the Russian Academy of Sciences; Bauman Moscow State Technical University (National Research University)

Author for correspondence.
Email: nikvikvas@mail.ru
Russian Federation, Moscow; Moscow

S. N. Vavilov

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: sergeynv@mail.ru
Russian Federation, Moscow

E. A. Lidzhiev

Joint Institute for High Temperatures of the Russian Academy of Sciences; Bauman Moscow State Technical University (National Research University)

Email: lind722k@gmail.com
Russian Federation, Moscow; Moscow

References

  1. Fletcher D.F., Theofanous T.G. Heat Transfer and Fluid Dynamic Aspects of Explosive Melt–Water Interactions // Advances in heat transfer. 1997. V. 29. P. 129–213. https://doi.org/10.1016/S0065-2717(08)70185-0
  2. Berthoud G. Vapor explosions // Annu. Rev. Fluid Mech. 2000. V. 32. № 1. P. 573–611. https://doi.org/10.1146/annurev.fluid.32.1.573
  3. Мелихов В.И., Мелихов О.И., Якуш С.Е. Термическое взаимодействие высокотемпературных расплавов с жидкостями // ТВТ. 2022. Т. 60. № 2. С. 280–318. https://doi.org/10.31857/S0040364422020284
  4. Мелихов В.И., Мелихов О.И., Волков Г.Ю., Якуш С.Е., Салех Б. Моделирование струйного истечения жидкости в затопленное пространство методом VOF // Теплоэнергетика. 2023. № 1. C. 75–86. https://doi.org/10.56304/S0040363622120050
  5. Ивочкин Ю.П. Исследование механизмов термогидродинамических и МГД процессов с жидкометаллическими рабочими телами: дис. … докт. техн. наук. М.: ОИВТ РАН, 2015.
  6. Клименко А.В., Вавилов С.Н., Васильев Н.В., Зейгарник Ю.А., Скибин Д.А. Паровой взрыв: экспериментальные наблюдения стадии спонтанного триггеринга процесса // Доклады РАН. Физика, технические науки. 2022. Т. 503. С. 13–16. https://doi.org/10.31857/S2686740022010084
  7. Васильев Н.В., Вавилов С.Н., Зейгарник Ю.А. Визуализация процессов, происходящих при самопроизвольном триггеринге парового взрыва // Научная визуализация. 2023. Т. 15. № 2. С. 38–44. https://doi.org/10.26583/sv.15.2.04
  8. Manickam L., Qiang G., Ma W., Bechta S. An experimental study on the intense heat transfer and phase change during melt and water interactions // Experimental Heat Transfer. 2019. V. 32. № 3. P. 251–266. https://doi.org/10.1080/08916152.2018.1505786
  9. Simons A., Bellemans I., Crivits T., Verbeken K. The effect of vapour formation and metal droplet temperature and mass on vapour explosion behavior // Int. J. Heat Mass Transf. 2022. V. 196. 123289. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123289
  10. Чашечкин Ю.Д., Ильиных А.Ю. Эволюция формы последовательных каверн импакта свободно падающей капли // Доклады РАН. Физика, технические науки. 2022. Т. 502. С. 36–44. https://doi.org/10.31857/S2686740021060055
  11. Чашечкин Ю.Д., Ильиных А.Ю. Перенос вещества капли при формировании первичной каверны // Доклады РАН. Физика, технические науки. 2023. Т. 508. С. 42–52. https://doi.org/10.31857/S2686740022060062
  12. Saito S., Abe Y., Koyama K. Flow transition criteria of a liquid jet into a liquid pool // Nuclear engineering and design. 2017. V. 315. P. 128–143. https://doi.org/10.1016/j.nucengdes.2017.02.011
  13. Катышев С.Ф., Десятник В.Н. Плотность и поверхностное натяжение расплавов системы NaF–NaCl–ZrF4 // Атомная энергия. 1998. Т. 84. № 1. С. 61–64.
  14. Hansson R.C., Dinh T.N., Manickam L.T. A study of the effect of binary oxide materials in a single droplet vapor explosion // Nuclear Engineering and Design. 2013. V. 264. P. 168–175. https://doi.org/10.1016/j.nucengdes.2013.02.017

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Propagation of a steam explosion during the disintegration of a jet of molten NaCl salt in water (water temperature tw = 23°C, salt temperature in the crucible tNaCl = 1100°C, jet similarity numbers Re = 2070, Oh = 1.4 ∙ 10–3). Exposure time is 4.5 μs. Time from the frame of the moment of jet disintegration (a): 1.11 ms (b); 1.87 (c); 1.99 (d); 2.02 (e); 2.03 (f); 2.05 (g); 2.08 (h); 2.34 ms (i). The white arrow indicates a satellite drop formed during the disintegration of the jet. The upper boundary of the frames corresponds to the water level in the container.

Download (392KB)

Copyright (c) 2024 Russian Academy of Sciences