Optical sensor based on nano-carbon

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibility of creating an optical sensor based on carbon nanoparticles used to amplify the Raman signal is discussed. Carbon nanotubes or graphene flakes can be used as reinforcement. This possibility is confirmed by the results of an experiment demonstrating the signal enhancement effect (SERS) when using carbon nanotubes. The possibility of using graphene flakes for this purpose is confirmed by experimental results indicating the presence of plasmonic oscillations in these objects, necessary for the implementation of the SERS effect.

Full Text

Restricted Access

About the authors

G. S. Bocharov

National Research University “Moscow Power Engineering Institute”

Email: Eletskii@mail.ru
Russian Federation, Moscow

A. V. Dedov

National Research University “Moscow Power Engineering Institute”

Email: Eletskii@mail.ru

Corresponding Member of the RAS

Russian Federation, Moscow

A. V. Eletskii

National Research University “Moscow Power Engineering Institute”

Author for correspondence.
Email: Eletskii@mail.ru
Russian Federation, Moscow

M. A. Zverev

National Research University “Moscow Power Engineering Institute”

Email: Eletskii@mail.ru
Russian Federation, Moscow

A. K. Sarychev

Institute of Theoretical and Applied Electrodynamics of the Russian Academy of Sciences

Email: Eletskii@mail.ru
Russian Federation, Moscow

S. D. Fedorovich

National Research University “Moscow Power Engineering Institute”

Email: Eletskii@mail.ru
Russian Federation, Moscow

References

  1. Fleischmann M., Hendra P.J., McQuillan A.J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode // Chemical Physics Letters. 1974. V. 26. №. 2. P. 163–166. https://doi.org/10.1016/0009-2614(74)85388-1
  2. Moskovits M. Surface-enhanced spectroscopy // Rev. Mod. Phys. 1985. V. 57. P. 783. https://doi.org/10.1103/RevModPhys.57.783
  3. Nabiev I.R., Efremov R.G., Chumanov G.D. Surface-enhanced Raman scattering and its application to the study of biological molecules // Sov. Phys. Usp. 1988. V. 31. P. 241–262. https://doi.org/10.1070/PU1988v031n03ABEH005720
  4. Pilot R., Signorini R., Durante C., Orian L., Bhamidipati M., Fabris L.A. Review on Surface-Enhanced Raman Scattering // Biosensors. 2019. V. 9. № 2. P. 57. https://doi.org/10.3390/bios9020057
  5. Bantz K.C., Meyer A.F., Wittenberg N.J., Im H., Kurtuluş Ö., Lee S.H., Lindquist N.C., Oh S.-H., Haynes C.L. Recent Progress in SERS Biosensing // Phys. Chem. Chem. Phys. 2011. V. 13. № . 24. P. 11551. https://doi.org/10.1039/c0cp01841d
  6. Nie S., Emory S.R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering // Science. 1997. V. 275. P. 1102. https://doi.org/10.1126/science.275.5303.1102
  7. Kneipp K., Wang Y., Kneipp H., Perelman L.T., Itzkan I., Dasari R.R., Feld M.S. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) // Phys. Rev. Lett. 1997. V. 78. P. 1667. https://doi.org/10.1103/PhysRevLett.78.1667
  8. Eletskii A.V., Sarychev A.K., Boginskaya I.A., Bocharov G.S., Gaiduchenko I.A., Egin M.S., Ivanov A.V., Kurochkin I.N., Ryzhikov I.A., Fedorov G.E. Amplification of a Raman Scattering Signal by Carbon Nanotubes // Dokl. Phys. 2018. V. 63. P. 496–498. https://doi.org/10.1134/S1028335818120066
  9. Kukushkin V.I., Van’kov A.B., Kukushkin I.V. Long-range manifestation of surface-enhanced Raman scattering // Jetp Lett. 2013. V. 98. P. 64–69. https://doi.org/10.1134/S0021364013150113
  10. Afanas’ev V.P., Bocharov G.S., Gryazev A.S., Eletskii A.V., Kaplya P.S., Ridzel O.Yu. Reduced graphene oxide studied by X-ray photoelectron spectroscopy: evolution of plasmon mode // J. of Physics: Conf. Series. 2018. V. 1121. P. 012001. https://doi.org/10.1088/1742-6596/1121/1/012001

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Raman spectrum of water in the absence of CNTs (1); Raman spectrum of water in the presence of CNTs synthesized using type A catalyst (2); Raman spectra of water in the presence of CNTs synthesized using type B catalyst (3) [8].

Download (36KB)
3. Fig. 2. Dependence of conductivity (1) and plasmon peak intensity (2) of thermally reduced graphene oxide on heat treatment temperature [10].

Download (33KB)
4. Fig. 3. Schematic representation of the optical sensor configuration: 1 – optical waveguide; 2 – carbon nanoparticles; 3 – object under study; 4 – laser beam; 5 – scattered signal.

Download (21KB)

Copyright (c) 2025 Russian Academy of Sciences