Laser nanoablation of diamond and formation of atomic-scale surface structures

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An experimental study of the mode of multi-pulse (108–109 pulses) laser nanoablation of single-crystal diamond, which is realized at irradiation intensity below the threshold of laser graphitization and allows controlling the depth of laser treatment of this material with accuracy to the atomic layer, has been carried out. The obtained dependences of the nanoablation rate on the laser energy density for various combinations of laser pulse duration and radiation wavelength indicate that the rate of photostimulated oxidation in air atmosphere is determined by the density of laser plasma created inside the material. A consistent decrease in the nanoablation rate with increasing concentration of nitrogen impurity in diamond was found. It was found that the duration of laser etching in the nanoablation mode and, respectively, the maximum depth of the created nanostructures are limited by the effect of cumulative graphitization.

Texto integral

Acesso é fechado

Sobre autores

T. Kononenko

Prokhorov General Physics Institute of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: taras.kononenko@nsc.gpi.ru
Rússia, Moscow

V. Kononenko

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: taras.kononenko@nsc.gpi.ru
Rússia, Moscow

E. Zavedeev

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: taras.kononenko@nsc.gpi.ru
Rússia, Moscow

V. Pashinin

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: taras.kononenko@nsc.gpi.ru
Rússia, Moscow

M. Komlenok

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: taras.kononenko@nsc.gpi.ru
Rússia, Moscow

P. Pivovarov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: taras.kononenko@nsc.gpi.ru
Rússia, Moscow

K. Ashikkalieva

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: taras.kononenko@nsc.gpi.ru
Rússia, Moscow

M. Dezhkina

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: taras.kononenko@nsc.gpi.ru
Rússia, Moscow

N. Kurochitsky

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: taras.kononenko@nsc.gpi.ru
Rússia, Moscow

A. Kupriyanov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: taras.kononenko@nsc.gpi.ru
Rússia, Moscow

V. Konov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: taras.kononenko@nsc.gpi.ru

Academician of the RAS

Rússia, Moscow

Bibliografia

  1. Rothschild A.C., Ehrich D.J. Excimer-laser etching of diamond and hard carbon films by direct writing and optical projection // J. Vac. Sci. Technol. B. 1986. V. 4. Р. 310–314.
  2. Hunn J.D., Withrow S.P., White C.W., Clausing R.E., Heatherly L., Christensen C.P. // Fabrication of single-crystal diamond microcomponents // Appl. Phys. Lett. 1994. V. 65(24). P. 3072–3074.
  3. Ramanathan D., Molian P.A. Micro- and sub-micromachining of type IIa Single crystal diamond using a Ti:sapphire femtosecond laser // J. Manufacturing Science and Engineering. 2002. V. 124 (2). P. 389–396.
  4. Shinoda M., Gattass R.R., Mazur E. Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces // J. Appl. Phys. 2009. V. 105(5). P. 053102.
  5. Zalloum O.H.Y., Parrish M., Terekhov A., Hofmeister W. On femtosecond micromachining of HPHT single-crystal diamond with direct laser writing using tight focusing // Opt. Express. 2010. V. 18(12). P. 13122–13135.
  6. Konov V.I. Laser in micro and nanoprocessing of diamond materials // Laser & Photonics Reviews. 2012. V. 6(6). P. 739–766.
  7. Ali B., Litvinyuk I.V., Rybachuk M. Femtosecond laser micromachining of diamond: Current research status, applications and challenges // Carbon. 2021. V. 179. P. 209–226.
  8. Apostolova T., Kurylo V., Gnilitskyi I. Ultrafast laser processing of diamond materials: A Review. Frontiers in Physics. 2021. V. 9.
  9. Кононенко В.В., Комленок М.С., Пименов С.М., Конов В.И. Фотоиндуцированное лазерное травление алмазной поверхности // Квантовая электроника. 2007. V. 37(11). P. 1043–1046.
  10. Gololobov V.M., Kononenko V.V., Konov V.I. Laser nanoablation of a diamond surface in air and vacuum // Optics & Laser Technology. 2020. V. 131. P. 106396.
  11. Baldwin C.G., Downes J.E., Mildren R.P. Enhanced etch rate of deep-UV laser induced etching of diamond in low pressure conditions // Applied Physics Letters. 2020. V. 117 (11). P. 111601.
  12. Komlenok M.S., Kononenko V.V., Ralchenko V.G., Pimenov S.M., Konov V.I. Laser Induced Nanoablation of Diamond Materials // Physics Procedia. 2011. V. 12. P. 37–45.
  13. Kononenko V.V., Gololobov V.M., Komlenok M.S., Konov V.I. Nonlinear photooxidation of diamond surface exposed to femtosecond laser pulses // Laser Physics Letters. 2015. V. 12(9). P. 096101.
  14. Mildren R.P., Downes J.E., Brown J.D., Johnston B.F., Granados E., Spence D.J., Lehmann A., Weston L., Bramble A. Characteristics of 2-photon ultraviolet laser etching of diamond // Optical Materials Express. 2011. V. 1(4). P. 576–585.
  15. Bandis C., Pate B.B. Electron emission due to exciton breakup from negative electron affinity diamond // Phys. Rev. Lett. 1995. 74(5). P. 777–780.
  16. Frenklach M., Huang D., Thomas R.E., Rudder R.A., Markunas R.J. Activation energy and mechanism of CO desorption from (100) diamond surface // Appl. Phys. Lett. 1993. V. 63(22). P. 3090–3092.
  17. Griffiths B., Kirkpatrick A., Nicley S.S., Patel R.L., Zajac J.M., Morley G.W., Booth M.J., Salter P.S., Smith J.M. Microscopic processes during ultrafast laser generation of Frenkel defects in diamond // Physical Review B. 2021. V. 104(17). P. 174303.
  18. Kononenko T.V., Ashikkalieva K.K., Ral’chenko V.G., Kononenko V.V., Konov V.I. Defect-assisted optical breakdown in synthetic diamonds irradiated by IR femtosecond pulses // Diamond & Related Materials. 2024. V. 142. P. 110812.
  19. Kononenko V.V., Komlenok M.S., Chizhov P.A., Bukin V.V., Bulgakova V.V., Khomich A.A., Bolshakov A.P., Konov V.I., Garnov S.V. Efficiency of photoconductive terahertz generation in nitrogen-doped diamonds // Photonics. 2022. V. 9(1). P. 18.
  20. Kononenko V.V., Gololobov V.M., Kononenko T.V., Konov V.I. Photoinduced graphitization of diamond // Laser Physics Letters. 2015. V. 12(1). P. 016101.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Comparison of typical Raman spectra for the initial diamond (coincides with the spectrum of the nanoablation crater) and the graphitized crater. The dotted line shows the components of the Raman spectrum characteristic of the nanocrystalline sp2-phase.

Baixar (80KB)
3. Fig. 2. a – Two-dimensional profile of a crater created by femtosecond pulses (sample #2, 220 fs & 515 nm, pulse energy Q = 7 nJ, number of pulses N = 2.2×109) and studied using OP; b – profiles of the central section of this crater obtained using OP and AFM.

Baixar (44KB)
4. Fig. 3. Typical dependences of crater depth on the number of laser pulses (sample No. 2, 10 ns & 355 nm).

Baixar (43KB)
5. Fig. 4. The influence of laser pulse parameters (wavelength and duration) on the rate of nanoablation.

Baixar (43KB)
6. Fig. 5. Comparison of nanoablation rates for different diamond crystals.

Baixar (69KB)
7. Fig. 6. Effect of laser pulse repetition rate on nanoablation rate.

Baixar (35KB)
8. Fig. 7. The influence of laser pulse parameters on the minimum number of pulses required for cumulative graphitization (a) and on the maximum etching depth of diamond in the nanoablation mode (b).

Baixar (64KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025