Transformation of aromatic hydrocarbons in the process of hydrogenation of a concentrated mixture to produce clean fuels

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The process of hydrogenation of a modeling mixture of aromatic hydrocarbons was studied in order to develop regulated approaches for producing environmentally friendly fuels. The process was carried out on a trimetallic PdNiCr catalyst deposited on aluminum oxide. The optimal conditions for carrying out the reaction were determined. The influence of the structure of substituted substrates on the formation of by-products of the ring-opening reaction has been established.

Full Text

Restricted Access

About the authors

А. N. Каlenchuk

Lomonosov Moscow State University; N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: lmkustov@mail.ru

Department of Chemistry

Russian Federation, 119991, Moscow; 119991, Moscow

N. N. Tolkachev

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences; Joint Institute for High Temperatures, Russian Academy of Sciences

Email: lmkustov@mail.ru
Russian Federation, 119991, Moscow; 125412, Moscow

I. I. Lischiner

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: lmkustov@mail.ru
Russian Federation, 125412, Moscow

O. V. Malova

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: lmkustov@mail.ru
Russian Federation, 125412, Moscow

L. M. Kustov

Lomonosov Moscow State University; N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: lmkustov@mail.ru

Department of Chemistry

Russian Federation, 119991, Moscow; 119991, Moscow

References

  1. Rana M.S., Samano V., Ancheyta J., Diaz J.A. // Fuel. 2007. V. 86. P. 1216–1231. https://doi.org/10.1016/j.fuel.2006.08.004
  2. Makarfi Y.I., Yakimova M.S., Lermontov A.S., Erofeev V.I., Koval L.M., Tretiyakov V.F. // Chem. Eng. J. 2009. V. 154. P. 396–400. https://doi.org/10.1016/j.cej.2009.06.001
  3. Hamieh S., Canaff C., Tayeb K.B., Tarighi M., Maury S., Vezin H., Pouilloux Y., Pinard L. // Eur. Phys. J. Special Topics. 2015. V. 224. P. 1817–1830. https://doi.org/10.1140/EPJST/E2015-02501-1
  4. Zaidi H.A., Pant K.K. // Catalysis Today. 2004. V. 96. P. 155–160. https://doi.org/10.1016/J.CATTOD.2004.06.123
  5. Song С., Ma X. // Appl. Catal. B: Env. 2003. V. 41. P. 207–238. https://doi.org/10.1016/S0926-3373(02)00212-6
  6. Stanislaus A., Cooper B.H. // Catal. Rev.-Sci. Eng. 1994. V. 36. P. 75–123. https://doi.org/10.1080/01614949408013921
  7. Shukla A.A., Gosavi P.V., Pande J.V., Kumar V.P., Chary K.V.R., Biniwale R.B. // Int. J. Hydrogen Energy. 2010. V. 35. P. 4020–4026. https://doi.org/10.1016/j.ijhydene.2010.02.014
  8. Lazaro M.P., Bordeje E.G., Sebastian D., Lazaro M.J., Moliner R. // Catal. Today. 2006. V. 138. P. 203–209. https://doi.org/10.1016/j.cattod.2008.05.011
  9. Maria G., Marin A., Wyss C., Muller S., Newson E. // Chem. Eng. Sci. 1996. V. 51. P. 2891–2896. https://doi.org/10.1016/0009-2509(96)00170-4
  10. Biniwale R.B., Rayalu S., Devotta S., Ichikawa M. // Int. J. Hydrogen Energy. 2008. V. 33. P. 360–365. https://doi.org/10.1016/j.ijhydene.2007.07.028
  11. Bourane A., Elanany M., Pham T.V., Katikaneni S.P. // Int. J. Hydrogen Energy. 2016. V. 41. P. 23075–23091. https://doi.org/10.1016/j.ijhydene.2016.07.167
  12. Pawelec B., Mariscal R., Navarro R.M., Bokhorst S., Rojasa S., Fierro J.L.G. // Appl. Catal. A: Gen. 2002. V. 225. P. 223–237. https://doi.org/10.1016/S0926-860X(01)00868-7
  13. Abu-Reziq R., Avnir D., Miloslavski I., Schumann H., Blum J. // J.Mol. Catal. A: Chem. 2002. V. 185. P. 179–185. https://doi.org/10.1016/s1381-1169(02)00012-2
  14. Park I.S., Kwon M.S., Kang K.Y., Lee J.S., Park J. // Adv. Synth. Catal. 2007. V. 349. P. 2039–2047. https://doi.org/10.1002/adsc.200600651
  15. Jorchik H., Preuster P., Bosmann A., Wasserscheid P. // Sustainable Energy & Fuels. 2021. V. 5. P. 1311–1346. https://doi.org/10.1039/D0SE01369B
  16. Cooper B.H., Donnis B.B.L. // Appl. Catal. A. 1996. V. 137. P. 203–223. https://doi.org/10.1016/0926-860X(95)00258-8
  17. Nishimura S. Handbook of heterogeneous catalytic hydrogenation for organic synthesis. N.Y.: Johnwilley & Sons, Inc., 2001. pp. 477–478. ISBN 0-471-39698-2
  18. Kaufmann T., Kaldor A., Stuntz G., Kerby M., Ansell L. // Catal. Today. 2000. V. 62. P. 77–90. https://doi.org/10.1016/S0920-5861(00)00410-7
  19. Santana R., Do P., Santikunaporn M., Alvarez W., Taylor J., Sughrue E., Resasco D. // Fuel. 2006. V. 85. P. 643−656. http://dx.doi.org/10.1016/j.fuel.2005.08.028
  20. Kustov L.M., Kustov A.L. // Rus. J. Phys. Chem. A. 2020. Vl. 94. P. 317−322. https://doi.org/10.1007/s10562-018-2325-4
  21. McVicker G., Daage M., Touvelle,M., Hudson C., Klein D., Baird W., Cook B., Chen J.G., Hantzer S.S., Vaughan D., Ellis E.S., Feeley O.C. // J. Catal. 2002. V. 210. P. 137–148. https://doi.org/10.1006/JCAT.2002.3685
  22. Sachtler W.M.H., Stakheev A.Yu. // Catal. Today. 1992. V. 12. P. 332–283. https://doi.org/10.1016/0920-5861(92)85046-O
  23. Kustov L.M., Kalenchuk A.N. // Metals. 2022. V. 12. P. 2002–2019. https://doi.org/10.3390/met12122002
  24. Kustov L.M., Kalenchuk A.N. // Catalysts. 2022. V. 12. P. 1506–1514. https://doi.org/10.3390/catal12121506
  25. Звонкова З.В. // Усп. химии. 1977. Т. 46. С. 907–927. https://doi.org/10.1070/RC1977v046n05ABEH002148
  26. Клар Э. Полициклические углеводороды. Т. 2. Москва: Химия, 1971. 456 с. ISSN: 2949-2076
  27. Rogers D.W., McLafferty, F.J. // J. Org. Chem. 2001. V. 66. P. 1157–1162. https://doi.org/10.1021/jo001242k
  28. Finashina E.D., Avaev V.I., Tkachenko O.P., Greish A.A., Davshan N.A., Kuperman A., Caro J., Kustov L.M. // Ind. & Eng. Chem. Res. 2021. V. 60. P. 7802–7815. https://doi.org/10.1021/acs.iecr.1c00538
  29. Stakheev A.Yu., Kustov L.M. // Appl. Catal. A: Gen. 1999. V. 188. P. 3–35. https://doi.org/10.1016/S0926-860X(99)00232-X
  30. Rodriguez J.A., Goodman D.W. // Science. 1992. V. 257.P. 897–903. https://doi.org/10.1126/science.257.5072.897
  31. Kubicka H., Okal J. // Catal. Lett. 1994. V. 25. P. 157–161. https://doi.org/10.1007/bf00815425
  32. Kubička H., Kumar N., Venalainen T., Kahru H., Kubickova I., Osterholm H., Murzin D. // J. Phys. Chem. B. 2006. V. 110. P. 4937–4942. https://doi.org/10.1021/jp055754k
  33. Kubička H., Kumar N., Maki-Arvela P., Venalainen T., Tiitta M., Salmi T., Murzin D. // Stud. Surf. Sci. Catal. 2005. V. 158. P. 1669–1675. https://doi.org/10.1016/S0167-2991(05)80524-5
  34. Davydov A.A. // Molecular Spectroscopy of Oxide Catalyst Surfaces. Wiley Interscience Publ. 2003. 90 p. ISBN: 978-0-471-98731-4
  35. Kustov L.M., Tarasov A.L., Tkachenko O.P. // Catal. Lett. 2018. V. 148. P. 1472–1477. https://doi.org/10.1007/s10562-018-2325-4
  36. Sotoodeh F., Zhao L., Smith K.J. // Appl. Catal. A: Gen. 2009. V. 362. P. 155–162. https://doi.org/10.1016/j.apcata.2009.04.039

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The change in the relative content of typical components of the hydrogenated mixture from the reaction time.

Download (174KB)
3. Fig. 2. Changes in selectivity for the main reaction products under different reaction conditions (Table 3).

Download (76KB)
4. Table 2-1

Download (3KB)
5. Table 2-2

Download (5KB)
6. Table 2-3

Download (4KB)
7. Table 2-4

Download (4KB)
8. Table 2-5

Download (5KB)
9. Table 2-6

Download (6KB)
10. Table 2-7

Download (6KB)
11. Table 2-8

Download (7KB)
12. Table 2-9

Download (7KB)
13. Table 2-10

Download (8KB)

Copyright (c) 2024 Russian Academy of Sciences