OPERATOR GROUP GENERATED BY A ONE-DIMENSIONAL DIRAC SYSTEM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In this paper, we construct a strongly continuous operator group generated by a one-dimensional Dirac operator acting in the space H=(L2[0,π])2. The potential is assumed to be summable. It is proved that this group is well-defined in the space H and in the Sobolev spaces HUθ, θ>0, with fractional index of smoothness θ and under boundary conditions U. Similar results are proved in the spaces (Lμ[0,π])2, μ(1,). In addition we obtain estimates for the growth of the group as t.

About the authors

A. M. Savchuk

Lomonosov Moscow State University

Author for correspondence.
Email: savchuk@cosmos.msu.ru
Russian Federation, Moscow

I. V. Sadovnichaya

Lomonosov Moscow State University

Author for correspondence.
Email: ivsad@yandex.ru
Russian Federation, Moscow

References

  1. Шкаликов А.А. // УМН. 1979. Т. 34. № 5(209). С. 235–236.
  2. Savchuk A.M., Shkalikov A.A. // Math. Notes. 2014. V. 96 № 5. P. 777–810.
  3. Гомилко А.M. // Функц. анализ и его прил. 1999. Т. 33 № 4. С. 66–69.
  4. Albeverio S., Hryniv R., Mykytyuk Ya. // Russian J. Math. Phys. 2005. V. 12. № 4. P. 406–42.
  5. Баскаков А.Г., Дербушев А.В., Щербаков А.О. // Изв. РАН. Сер. матем. 2011. Т. 75. № 3. С. 3–28.
  6. Djakov P., Mityagin B. // Proc. Amer. Math. Soc. 2013. V. 141. № 4. P. 1361–1375.
  7. Beigl A., Eckhardt J., Kostenko A., Teschl G. // J. Math. Phys. 2015. V. 56, 012102.
  8. Djakov P., Mityagin B. // Russ. Math. Surv. 2020. V. 75. № 4. P. 587–626.
  9. Савчук А.М., Садовничая И.В. // Совр. мат-ка. Фунд. напр-я. 2020. Т. 66. № 3. С. 373–530.
  10. Лунев А.А., Маламуд М.М. // Зап. научн. сем. ПОМ-И. 2022. Т. 516. С. 69–120.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 А.М. Савчук, И.В. Садовничая