Induced forests and trees in Erdös–Rényi random graph
- Autores: Akhmejanova M.B.1, Kozhevnikov V.S.2
- 
							Afiliações: 
							- King Abdullah University of Science and Technology
- Moscow Institute of Physics and Technology (National Research University)
 
- Edição: Volume 516 (2024)
- Páginas: 21-25
- Seção: MATHEMATICS
- URL: https://ruspoj.com/2686-9543/article/view/647944
- DOI: https://doi.org/10.31857/S2686954324020041
- EDN: https://elibrary.ru/XJAOZE
- ID: 647944
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
We prove concentration in the interval of size for the size of the maximum induced forest (of bounded and unbounded degree) in for for arbitrary fixed . We also show 2-point concentration of the size of the maximum induced forest (and tree) of bounded degree in the binomial random graph for
Palavras-chave
Texto integral
 
												
	                        Sobre autores
M. Akhmejanova
King Abdullah University of Science and Technology
							Autor responsável pela correspondência
							Email: margarita.akhmejanova@kaust.edu.sa
				                					                																			                												                	Arábia Saudita, 							KAUST						
V. Kozhevnikov
Moscow Institute of Physics and Technology (National Research University)
														Email: vladislavkozhevnikov@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Bollobás B., Erdős P. Cliques in random graphs // Mathematical Proceedings of the Cambridge Philosophical Society. 1976. V. 80. P. 419–427.
- Fountoulakis N., Kang R.J., McDiarmid C. The t-stability number of a random graph // The Electronic Journal of Combinatorics. 2010. V. 17. P. 1–10.
- Fountoulakis N., Kang R.J., McDiarmid C. Largest sparse subgraphs of random graphs // European Journal of Combinatorics. 2014. V. 35. P. 232–244.
- Dutta K., Subramanian C.R. On Induced Paths, Holes and Trees in Random Graphs // 2018 Proceedings of the Fifteenth Workshop on Analytic Algorithmics and Combinatorics. 2018. P. 168–177.
- Kamaldinov D., Skorkin A., Zhukovskii M. Maximum sparse induced subgraphs of the binomial random graph with given number of edges // Discrete Mathematics. 2021. V. 344. P. 112205.
- Krivoshapko M., Zhukovskii M. Maximum induced forests in random graphs // Discrete Applied Mathematics. 2021. V. 305. P. 211–213.
- Frieze A.M. On the independence number of random graphs // Discrete Mathematics. 1990. V. 81. P. 171–175.
- Fernandez de la Vega W. The largest induced tree in a sparse random graph // Random Structures and Algorithms. 1996. V. 9. P. 93–97.
- Cooley O., Draganić N., Kang M., Sudakov B. Large Induced Matchings in Random Graphs // SIAM Journal on Discrete Mathematics. 2021. V. 35. P. 267–280.
- Draganić N., Glock S., Krivelevich M. The largest hole in sparse random graphs // Random Structures & Algorithms. 2022. V. 61. P. 666–677.
- Janson S., Łuczak T., Ruciński A. Random Graphs. John Wiley & Sons, Inc. 2000.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
