OPERATOR GROUP GENERATED BY A ONE-DIMENSIONAL DIRAC SYSTEM
- Authors: Savchuk A.M.1, Sadovnichaya I.V.1
- 
							Affiliations: 
							- Lomonosov Moscow State University
 
- Issue: Vol 514 (2023)
- Pages: 79-81
- Section: MATHEMATICS
- URL: https://ruspoj.com/2686-9543/article/view/647921
- DOI: https://doi.org/10.31857/S2686954323600568
- EDN: https://elibrary.ru/CZLLLF
- ID: 647921
Cite item
Abstract
In this paper, we construct a strongly continuous operator group generated by a one-dimensional Dirac operator acting in the space \(\mathbb{H} = {{\left( {{{L}_{2}}[0,\pi ]} \right)}^{2}}\). The potential is assumed to be summable. It is proved that this group is well-defined in the space \(\mathbb{H}\) and in the Sobolev spaces \(\mathbb{H}_{U}^{\theta }\), \(\theta > 0\), with fractional index of smoothness \(\theta \) and under boundary conditions \(U\). Similar results are proved in the spaces \({{\left( {{{L}_{\mu }}[0,\pi ]} \right)}^{2}}\), \(\mu \in (1,\infty )\). In addition we obtain estimates for the growth of the group as \(t \to \infty \).
Keywords
About the authors
A. M. Savchuk
Lomonosov Moscow State University
							Author for correspondence.
							Email: savchuk@cosmos.msu.ru
				                					                																			                												                								Russian Federation, Moscow						
I. V. Sadovnichaya
Lomonosov Moscow State University
							Author for correspondence.
							Email: ivsad@yandex.ru
				                					                																			                												                								Russian Federation, Moscow						
References
- Шкаликов А.А. // УМН. 1979. Т. 34. № 5(209). С. 235–236.
- Savchuk A.M., Shkalikov A.A. // Math. Notes. 2014. V. 96 № 5. P. 777–810.
- Гомилко А.M. // Функц. анализ и его прил. 1999. Т. 33 № 4. С. 66–69.
- Albeverio S., Hryniv R., Mykytyuk Ya. // Russian J. Math. Phys. 2005. V. 12. № 4. P. 406–42.
- Баскаков А.Г., Дербушев А.В., Щербаков А.О. // Изв. РАН. Сер. матем. 2011. Т. 75. № 3. С. 3–28.
- Djakov P., Mityagin B. // Proc. Amer. Math. Soc. 2013. V. 141. № 4. P. 1361–1375.
- Beigl A., Eckhardt J., Kostenko A., Teschl G. // J. Math. Phys. 2015. V. 56, 012102.
- Djakov P., Mityagin B. // Russ. Math. Surv. 2020. V. 75. № 4. P. 587–626.
- Савчук А.М., Садовничая И.В. // Совр. мат-ка. Фунд. напр-я. 2020. Т. 66. № 3. С. 373–530.
- Лунев А.А., Маламуд М.М. // Зап. научн. сем. ПОМ-И. 2022. Т. 516. С. 69–120.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					