Parametrization of spatial-energy distributions of H+ and O+ ions of the ring current on the main phase of magnetic storms
- Authors: Kovtyukh A.S.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 64, No 4 (2024)
- Pages: 529-547
- Section: Articles
- URL: https://ruspoj.com/0016-7940/article/view/650923
- DOI: https://doi.org/10.31857/S0016794024040087
- EDN: https://elibrary.ru/RSTUTM
- ID: 650923
Cite item
Abstract
Based on the results of measurements near the equatorial plane a fluxes and energy spectra of H+ and O+ ions of the magnetosphere’s ring current by the OGO-3, Explorer 45, AMPTE/CCE, and Van Allen Probes (A and B) satellites, a systematic analysis of spatial distributions of the energy density for these ions on the main phase of magnetic storms was carried out. Twelve storms of different strength were considered, with max|Dst| from 64 to 307 nT. The radial profile of the ring current ions energy density is characterized by the maximum (Lm) and by the ratio of the energy densities of the ions and the magnetic field at this maximum (βm), and at L > Lm this profile is approximated by the function w(L) = w0exp(–L/L0). Quantitative dependences of the parameter Lm on the Dst index and MLT, and also the dependences of the parameters βm, w0 and L0 on the Dst, MLT and Lm, are obtained. These dependences are different for H+ and O+ ions, as well as for ions of low (E < 60 keV) and higher energies. It has been established that in a narrow inner region of the ring current near its maximum in the nighttime hemisphere of the magnetosphere, the ring current asymmetry is much smaller (especially for O+ ions) than at L > Lm. It was found that with increasing L, the asymmetry of the ring current by MLT increases significantly, with H+ ions concentrated at near 18 MLT, and O+ ions at near 24 MLT. It is shown that for O+ ions with E ~ 1–300 keV, βm ∝ Lm–9; this result shows that a deeper penetration of hot plasma into a geomagnetic trap, during strong storms, requires not only a stronger electric field of convection, but also a significant preliminary accumulation and acceleration of ions (especially O+ ions) in the sources of the ring current.
About the authors
A. S. Kovtyukh
Lomonosov Moscow State University
Author for correspondence.
Email: kovtyukhas@mail.ru
Skobeltsyn Institute of Nuclear Physics
Russian Federation, MoscowReferences
- Ковтюх А.С. Радиальный профиль давления буревого кольцевого тока как функция Dst // Космические исследования. Т. 48. № 3. С. 218-238. 2010. (Kovtyukh A.S. Radial profile of pressure in a storm ring current as a function of Dst // Cosmic Res. V. 48. № 3. P. 211–231. 2010. https://doi.org/10.1134/S0010952510030032)
- Anderson R.R., Gurnett D.A. Plasma wave observations near the plasmapause with the S3-A satellite // J. Geophys. Res. V. 78. № 22. P. 4756-4764. 1973. https://doi.org/10.1029/JA078i022p04756
- Burke W.J., Maynard N.C., Hagan M.P., Wolf R.A., Wilson G.R., Gentile L.C., Gussenhoven M.S., Huang C.Y., Garner T.W., Rich F.J. Electrodynamics of the inner magnetosphere observed in the dusk sector by CRRES and DMSP during the magnetic storm of June 4–6, 1991 // J. Geophys. Res. – Space. V. 103. № 12. P. 29399–29418. 1998. https://doi.org/10.1029/98JA02197
- Burke W.J., Gentile L.C., Huang C.Y. Penetration electric fields driving main phase Dst, J. Geophys. Res. – Space. V. 112. № 7. ID A07208. 2007. https://doi.org/10.1029/2006JA012137
- Cahill L.J., Jr., Lee Y.C. Development of four magnetic storms in February 1972 // Planet. Space Sci. V. 23. № 9. P. 1279-1292. 1975. https://doi.org/10.1016/0032-0633(75)90151-8
- Daglis I.A., Thorne R.M., Baumjohann W., Orsini S. The terrestrial ring current: Origin, formation, and decay // Rev. Geophys. V. 37. № 4. P. 407–438. 1999. https://doi.org/10.1029/1999RG900009
- Ebihara Y., Ejiri M. Numerical simulation of the ring current: Review // Space Sci. Rev. V. 105. № 1–2. P. 377–452. 2003. https://doi.org/10.1023/A:1023905607888
- Frank L.A. On the extraterrestrial ring current during geomagnetic storms // J. Geophys. Res. V. 72. № 15. P. 3753–3767. 1967. https://doi.org/10.1029/JZ072i015p03753
- Fritz T.A., Smith P.H., Williams D.J., Hoffman R.A., Cahill L.J., Jr. Initial observations of magnetospheric boundaries by Explorer 45 (S3) / Correlated Interplanetary and Magnetospheric Observations. Ed. D.E. Page / Astrophys. Space Sci. L. V. 42. Dordrecht, Holland: D. Reidel Publishing Co., pp. 485-506. 1974. https://doi.org/10.1007/978-94-010-2172-2_31
- Fu S.Y., Zong Q.G., Fritz T.A., Pu Z.Y., Wilken B. Composition signatures in ion injections and its dependence on geomagnetic conditions // J. Geophys. Res. – Space. V. 107. № 10. ID 1299. 2002. https://doi.org/10.1029/2001JA002006
- Ganushkina N.Y., Pulkkinen T.I., Fritz T.A. Role of substorm-associated impulsive electric fields in the ring current development during storms // Ann. Geophys. V. 23. № 2. P. 579–591. 2005. https://doi.org/10.5194/angeo-23-579-2005
- Garner T.W., Wolf R.A., Spiro R.W., Burke W.J., Fejer B.G., Sazykin S., Roeder J.L., Hairston M.R. Magnetospheric electric fields and plasma sheet injection to low L-shells during the 4–5 June 1991 magnetic storm: Comparison between the Rice Convection Model and observations // J. Geophys. Res. – Space. V. 109. № 2. ID A02214. 2004. https://doi.org/10.1029/2003JA010208
- Gkioulidou M., Ohtani S., Mitchell D.G., Ukhorskiy A.Y., Reeves G.D., Turner D.L., Gjerloev J.W., Nosé M., Koga K., Rodriguez J.V., Lanzerotti L.J. Spatial structure and temporal evolution of energetic particle injections in the inner magnetosphere during the 14 July 2013 substorm event // J. Geophys. Res. – Space. V. 120. № 3. P. 1924–1938. 2015. https://doi.org/10.1002/2014JA020872
- Gloeckler G., Wilken B., Stüdeman, W., Ipavich F.M., Hovestadt D., Hamilton D.C., Kremser G. First composition measurement of the bulk of the storm-time ring current (1 to 300 keV/e) with AMPTE-CCE // Geophys. Res. Lett. V. 12. № 5. P. 325–328. 1985. https://doi.org/10.1029/GL012i005p00325
- Gloeckler G., Hamilton D.C. AMPTE ion composition results // Phys. Scripta. V. T18. P. 73–84. 1987. https://doi.org/10.1088/0031-8949/1987/T18/009
- Greenspan M.E., Hamilton D.C. A test of the Dessler-Parker-Sckopke relation during magnetic storms // J. Geophys. Res. – Space. V. 105. № 3. P. 5419–5430. 2000. https://doi.org/10.1029/1999JA000284
- Greenspan M.E., Hamilton D.C. Relative contributions of H+ and O+ to the ring current energy near magnetic storm maximum // J. Geophys. Res. – Space. V. 107. № 4. ID 1043. 2002. https://doi.org/10.1029/2001JA000155
- Hamilton D.C., Gloeckler G., Ipavich F.M., Stüdemann W., Wilken B., Kremser G. Ring current development during the great geomagnetic storm of February 1986 // J. Geophys. Res. – Space. V. 93. № 12. P. 14343–14355. 1988. https://doi.org/10.1029/JA093iA12P14343
- Jordanova V.K., Zaharia S., Welling D.T. Comparative study of ring current development using empirical, dipolar, and self-consistent magnetic field simulations // J. Geophys. Res. – Space. V. 115. № 12. ID A00J11. 2010. https://doi.org/10.1029/2010JA015671
- Keika K., Nosé M., Ohtani S., Takahashi K., Christon S.P., McEntire R.W. Outflow of energetic ions from the magnetosphere and its contribution to the decay of the storm time ring current // J. Geophys. Res. – Space. V. 110. № 1. ID A09210. 2005. https://doi.org/10.1029/2004JA010970
- Keika K., Seki K., Nosé M., Miyoshi Y., Lanzerotti L.J., Mitchell D.G., Gkioulidou M., Manweiler J.W. Three-step buildup of the 17 March 2015 storm ring current: Implication for the cause of the unexpected storm intensification // J. Geophys. Res. – Space. V. 123. № 1. P. 414–428. 2018. https://doi.org/10.1002/2017JA024462
- Kistler L.M., Mouikis C.G., Spence H.E. et al. The source of O+ in the storm time ring current // J. Geophys. Res. – Space. V. 121. № 6. P. 5333–5349. 2016. https://doi.org/10.1002/2015JA022204
- Korth A., Friedel R.H.W., Mouikis C.G., Fennell J.F., Wygant J.R., Korth H. Comprehensive particle and field observations of magnetic storms at different local times from the CRRES spacecraft // J. Geophys. Res. – Space. V. 105. № 8. P. 18729–18740. 2000. https://doi.org/10.1029/1999JA000430
- Kozyra J.U., Jordanova V.K., Borovsky J.E., Thomsen M.F., Knipp D.J., Evans D.S., McComas D.J., Cayton T.E. Effects of a high-density plasma sheet on ring current development during the November 2–6, 1993, magnetic storm // J. Geophys. Res. – Space. V. 103. № 11. P. 26285–26305. 1998. https://doi.org/10.1029/98JA01964
- Kozyra J.U., Liemohn M.W., Clauer C.R., Ridley A.J., Thomsen M.F., Borovsky J.E., Roeder J.L., Jordanova V.K., Gonzalez W.D. Multistep Dst development and ring current composition changes during the 4–6 June 1991 magnetic storm // J. Geophys. Res. – Space. V. 107. № 8. ID 1224. 2002. https://doi.org/10.1029/2001JA000023
- Krimigis S.M., Gloeckler G., McEntire R.M., Potemra T.A., Scarf F.L., Shelley E.G. Magnetic storm of September 4, 1984: A synthesis of ring current spectra and energy densities measured with AMPTE/CCE // Geophys. Res. Lett. V. 12. № 5. P. 329–332. 1985. https://doi.org/10.1029/GL012i005p00329
- Li H., Wang C., Kan J.R. Contribution of the partial ring current to the SYM-H index during magnetic storms // J. Geophys. Res. – Space. V. 116. № 11. ID A11222. 2011. https://doi.org/10.1029/2011JA016886
- Liemohn M.W., Kozyra J.U., Thomsen M.F., Roeder J.L., Lu G., Borovsky J.E., Cayton T.E. Dominant role of the asymmetric ring current in producing the stormtime Dst* // J. Geophys. Res. – Space. V. 106. № 6. P. 10883–10904. 2001. https://doi.org/10.1029/2000JA000326
- McEntire R.W., Lui A.T.Y., Krimigis S.M., Keath E.P. AMPTE/CCE energetic particle composition measurements during the September 4, 1984 magnetic storm // Geophys. Res. Lett. V. 12. № 5. P. 317-320. 1985. https://doi.org/10.1029/GL012i005p00317
- McIlwain C.E. Coordinate for mapping the distribution of magnetically trapped particles // J. Geophys. Res. V. 66. № 11. P. 3681-3691. 1961. https://doi.org/10.1029/JZ066p011p03681
- McPherron R.L., O’Brien T.P. Predicting geomagnetic activity: The Dst index / Space Weather. Eds. P. Song, H.J. Singer, G.L. Siscoe / Geoph. Monog. Series. V. 125. Washington, D. C.: AGU, pp. 339–345. 2001. https://doi.org/10.1029/GM125p0339
- Menz A.M., Kistler L.M., Mouikis C.G., Spence H.E., Skoug R.M., Funsten H.O., Larsen B.A., Mitchell D.G., Gkioulidou M. The role of convection in the buildup of the ring current pressure during the 17 March 2013 storm // J. Geophys. Res. – Space. V. 122. № 1. P. 475–492. 2017. https://doi.org/10.1002/2016JA023358
- Menz A.M., Kistler L.M., Mouikis C.G., Matsui H., Spence H.E., Thaller S.A., Wygant J.R. Efficacy of electric field models in reproducing observed ring current ion spectra during two geomagnetic storms // J. Geophys. Res. – Space. V. 124. № 11. P. 8974–8991. 2019a. https://doi.org/10.1029/2019JA026683
- Menz A.M., Kistler L.M., Mouikis C.G., Spence H.E., Henderson M.G. Effects of a realistic O+ source on modeling the ring current // J. Geophys. Res. – Space. V. 124. № 12. P. 9953–9962. 2019b. https://doi.org/10.1029/2019JA026859
- Mitchell D.G., Gkioulidou M., Ukhorskiy A.Y. Energetic ion injections inside geosynchronous orbit: Convection- and drift-dominated, charge-dependent adiabatic energization (W = qEd) // J. Geophys. Res. – Space. V. 123. № 8. P. 6360–6382. 2018. https://doi.org/10.1029/2018JA025556
- Nishimura Y., Shinbori A., Ono T., Iizima M., Kumamoto A. Storm-time electric field distribution in the inner magnetosphere // Geophys. Res. Lett. V. 33. № 22. ID L22102. 2006. https://doi.org/10.1029/2006GL027510
- Nishimura Y., Shinbori A., Ono T., Iizima M., Kumamoto A. Evolution of ring current and radiation belt particles under the influence of storm-time electric fields // J. Geophys. Res. – Space. V. 112. № 6. ID A06241. 2007. https://doi.org/10.1029/2006JA012177
- Potemra T.A., Zanetti L.J., Acuna M.H. AMPTE/CCE magnetic field studies of the September 4, 1984 storm // Geophys. Res. Lett. V. 12. № 5. P. 313–316. 1985. https://doi.org/10.1029/GL012i005p00313
- Roederer J.G. Dynamics of Geomagnetically Trapped Radiation. New York, Heidelberg, Berlin: Springer, 166 p. 1970. https://doi.org/10.1007/978-3-642-49300-3
- Roederer J.G., Lejosne S. Coordinates for representing radiation belt particle flux // J. Geophys. Res. – Space. V. 123. № 2. P. 1381–1387. 2018. https://doi.org/10.1002/2017JA025053
- Siscoe G.L., McPherron R.L., Jordanova V.K. Diminished contribution of ram pressure to Dst during magnetic storms // J. Geophys. Res. – Space. V. 110. № 12. ID A12227. 2005. https://doi.org/10.1029/2005JA011120
- Smith P.H., Hoffman R.A. Ring current particle distributions during the magnetic storms of December 16-18, 1971 // J. Geophys. Res. V. 78. № 22. P. 4731-4737. 1973. https://doi.org/10.1029/JA078i022p04731
- Stüdemann W., Gloeckler G., Wilken B., Ipavich F.M., Kremser G., Hamilton, D.C., Hovestadt D. Ion composition of the bulk ring current during a magnetic storm: Observations with the CHEM-Instrument on AMPTE/CCE / Solar Wind - Magnetosphere Coupling. Eds. Y. Kamide, J.A. Slavin. Tokyo: Terra Sci., pp. 697–705. 1986.
- Thaller S.A., Wygant J.R., Dai L. et al. Van Allen Probes investigation of the large-scale duskward electric field and its role in ring current formation and plasmasphere erosion in the 1 June 2013 storm // J. Geophys. Res. – Space. V. 120. № 6. P. 4531–4543. 2015. https://doi.org/10.1002/2014JA020875
- Wang W., Yang J., Nishimura Y. et al. Magnetospheric source and electric current system associated with intense SAIDs // Geophys. Res. Lett. V. 48. № 22. ID e2021GL093253. 2021. https://doi.org/10.1029/2021GL093253
- Wygant J., Rowland D., Singer H.J., Temerin M., Mozer F., Hudson M.K. Experimental evidence on the role of the large spatial scale electric field in creating the ring current // J. Geophys. Res. – Space. V. 103. № 12. P. 29527–29544. 1998. https://doi.org/10.1029/98JA01436
- Yang J., Toffoletto F.R., Wolf R.A. Comparison study of ring current simulations with and without bubble injections // J. Geophys. Res. – Space. V. 121. № 1. P. 374–379. 2016. https://doi.org/10.1002/2015JA021901
- Yang Y.Y., Shen C., Dunlop M., Rong Z.J., Li X., Angelopoulos V., Chen Z.Q., Yan G.Q., Ji Y. Storm time current distribution in the inner equatorial magnetosphere: THEMIS observations // J. Geophys. Res. – Space. V. 121. № 6. P. 5250–5259. 2016. https://doi.org/10.1002/2015JA022145
- Yue C., Bortnik J., Li W. et al. The composition of plasma inside geostationary orbit based on Van Allen Probes observations // J. Geophys. Res. – Space. V. 123. № 8. P. 6478–6493. 2018. https://doi.org/10.1029/2018JA025344
- Yue C., Bortnik J., Li W. et al. Oxygen ion dynamics in the Earth's ring current: Van Allen Probes observations // J. Geophys. Res. – Space. V. 124. № 10. P. 7786–7798. 2019. https://doi.org/10.1029/2019JA026801
- Zeng X.Y., Ma S.Y., Xu L., Valek P., Wang H., Xiong C., Cai H.T. Global 3-D distributions of O+ and H+ ions in the inner magnetosphere reconstructed by voxel tomography from TWINS ENA images during a large magnetic storm // J. Geophys. Res. – Space. V. 128. № 7. ID e2023JA031442. 2023. https://doi.org/10.1029/2023JA031442
- Zhao H., Li X., Baker D.N. et al. The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements // J. Geophys. Res. – Space. V. 120. № 9. P. 7493–7511. 2015. https://doi.org/10.1002/2015JA021533
Supplementary files
