Anomalic Quasi-Recurrent Variations of Cosmic Rays in September 2014 – February 2015

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An abnormal behavior of galactic cosmic rays in September 2014 – February 2015, manifested in a significant modulation of its flux with a period close to solar rotation, is studied. The state of the solar magnetic field, changes in the parameters of the solar wind and interplanetary magnetic field during the specified period are analyzed. The reasons for the occurrence of longitudinal asymmetry in the distribution of galactic cosmic rays in the inner heliosphere are discussed. It has been established that the period under study is divided into two parts with different physical conditions on the Sun. Conclusions have been drawn about the decisive joint influence of sporadic and recurrent events: repeatedly renewable “magnetic traps” created by successive coronal mass ejections from the same longitudinal zone and anomalously expanded polar coronal holes with an enhanced magnetic field.

Full Text

Restricted Access

About the authors

N. S. Shlyk

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)

Author for correspondence.
Email: nshlyk@izmiran.ru
Russian Federation, Moscow, Troitsk

A. V. Belov

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)

Email: nshlyk@izmiran.ru
Russian Federation, Moscow, Troitsk

V. N. Obridko

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)

Email: nshlyk@izmiran.ru
Russian Federation, Moscow, Troitsk

M. A. Abunina

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)

Email: nshlyk@izmiran.ru
Russian Federation, Moscow, Troitsk

A. A. Abunin

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)

Email: nshlyk@izmiran.ru
Russian Federation, Moscow, Troitsk

References

  1. Алания М.В., Шаташвили Л.X. Квазипериодические вариации космических лучей. Тбилиси: Мецниереба, 1974. 136 с.
  2. Базилевская Г.А., Охлопков В.П., Чарахчьян Т.Н. Исследования 27-дневных вариаций космических лучей и их связи с неравномерным распределением активных областей на Солнце // Труды ФИАН. 1976. Т. 88. С. 94—113.
  3. Безродных И.П., Морозова Е.И., Петрукович А.А., Кожухов М.А Динамика солнечной и геомагнитной активности. III. Солнечная и геомагнитная активность в 24 цикле. Реконструкция динамики солнечной и геомагнитной активности // Вопросы электромеханики. Труды ВНИИЭМ. 2019. Т. 172. № 5. С. 10—24.
  4. Белов А.В. Вспышки, выбросы, протонные события // Геомагнетизм и аэрономия. 2017. Т. 57. № 6. С. 783—793. https://doi.org/10.7868/S0016794017060025
  5. Белов А.В., Ерошенко Е.А., Янке В.Г., Оленева В.А., Абунина М.А., Абунин А.А. Метод глобальной съемки для мировой сети нейтронных мониторов // Геомагнетизм и аэрономия. 2018. Т. 58. № 3. С. 374—389. https://doi.org/10.7868/S0016794018030082
  6. Белов А.В., Белова Е.А., Шлык Н.С., Абунина М.А., Абунин А.А. Геоэффективность спорадических явлений в 24 солнечном цикле // Геомагнетизм и аэрономия. 2023. Т. 63. № 4. С. 534—544. https://doi.org/10.31857/S0016794023600291
  7. Дорман Л.И. Вариации космических лучей и исследование космоса. М.: Изд-во АН СССР, 1963. 1028 с.
  8. Дорман Л.И., Фейнберг Е.Л. Вариации космических лучей // Успехи физических наук. 1956. Т. 59. № 2. С. 189—228. https://doi.org/10.3367/UFNr.0059.195606a.0189
  9. Ишков В.Н. Итоги и уроки 24 цикла — первого цикла второй эпохи пониженной солнечной активности // Астрон. журн. 2022. Т. 99. № 1. С. 54—69. https://doi.org/10.31857/S0004629922020050
  10. Обридко В.Н., Шельтинг Б.Д., Харшиладзе А.Ф. Расчеты межпланетного магнитного поля по данным о его величине в фотосфере солнца // Геомагнетизм и аэрономия. 2006. Т. 46. № 3. С. 310—319.
  11. Пишкало Н.И., Лейко У.М. Динамика околополярного магнитного поля Солнца в максимуме 24-го цикла // Кинематика и физика небесных тел. 2016. Т. 32. № 2. С. 37—47.
  12. Сдобнов В.Е., Кравцова М.В., Олемской С.В. Модуляционное влияние коротирующей магнитной ловушки на 27-дневные вариации космических лучей в ноябре — декабре 2014 г. // Солнечно-земная физика. 2019. Т. 5. № 1. С. 13—16. https://doi.org/10.12737/szf-51201902
  13. Шлык Н.С., Белов А.В., Абунина М.А., Ерошенко Е.А., Абунин А.А., Оленева В.А., Янке В.Г. Влияние взаимодействующих возмущений солнечного ветра на вариации галактических космических лучей // Геомагнетизм и аэрономия. 2021. Т. 61. № 6. С. 694—703. https://doi.org/10.31857/S0016794021060134
  14. Altukhov A.M., Okhlopkov V.P., Charakhchyan T.N., Bazilevskaia G.A. The relationship between high speed solar wind streams and 27-day cosmic ray variation / Proc. 15th ICRC. Plovdiv, Bulgaria, August 13—26, 1977. V. 3. P. 247—251.
  15. Belov A.V. Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena // Universal Heliophysical Processes: proceedings of the International Astronomical Union, IAU Symposium. 2008. V. 4. Symp. S257. P. 439—450. https://doi.org/10.1017/S1743921309029676
  16. Belov A.V., Shlyk N.S., Abunina M.A., Belova E.A., Abunin A.A., Papaioannou A. Solar energetic particle events and Forbush decreases driven by the same solar sources // Universe. 2022. V. 8. № 8. ID403. https://doi.org/10.3390/universe8080403
  17. Broxon J.W. Recurrence phenomena in cosmic-ray intensity // Phys. Rev. 1941. V. 59. № 10. P. 773—776. https://doi.org/10.1103/PhysRev.59.773
  18. Chen H., Zhang J., Ma S., Yang S., Li L., Huang X., Xiao J. Confined flares in solar active region 12192 from 2014 October 18 to 29 // Astrophys. J. Lett. 2015. V. 808. № 1. ID L24. https://doi.org/10.1088/2041-8205/808/1/L24
  19. Gil A., Mursula K. Exceptionally strong variation of galactic cosmic ray intensity at solar rotation period after the maximum of solar cycle 24 // Proc. 34th ICRC, Hague, Netherlands, July 30 – August 6, 2015. V. 236. ID149. https://doi.org/10.22323/1.236.0149
  20. Gil A., Alania M.V. Energy spectrum of the recurrent variation of galactic cosmic rays during the solar minimum of cycles 23/24 // Solar Phys. 2016. V. 291. № 6. P. 1877—1886. https://doi.org/10.1007/s11207-016-0924-z
  21. Dumbović M., Heber B., Vršnak B., Temmer M., Kirin A. An analytical diffusion–expansion model for Forbush decreases caused by flux ropes // Astrophys. J. V. 860. № 1. ID71. 2018. https://doi.org/10.3847/1538-4357/aac2de
  22. Hassler D.M., Zeitlin C., Wimmer-Schweingruber R.F., et al. Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover // Science. V. 343. № 6169. ID1244797. 2014. https://doi.org/10.1126/science.1244797
  23. Karna N., Hess Webber S.A., Pesnell W.D. Using polar coronal hole area measurements to determine the solar polar magnetic field reversal in solar cycle 24 // Solar Phys. V. 289. № 9. P. 3381—3390. 2014. https://doi.org/10.1007/s11207-014-0541-7
  24. Korsos M.B., Ruderman M.S., Erdelyi R. An application of the weighted horizontal magnetic gradient to solar compact and eruptive events // Adv. Space Res. V. 61. № 2. P. 595—602. 2018. https://doi.org/10.1016/j.asr.2017.05.023
  25. Laster H., Lenchek A.M., Singer S.F. Forbush decreases produced by diffusive deceleration mechanism in interplanetary space // J. Geophys. Res. V. 67. № 7. P. 2639—2643. 1962. https://doi.org/10.1029/JZ067i007p02639
  26. Munakata K., Yasue S., Kato C., Kota J., Tokumaru M., Kojima M., Darwish A.A., Kuwabara T., Bieber J.W. On the cross-field diffusion of galactic cosmic rays into an ICME // Advances in Geosciences. V. 2. Solar Terrestrial. Ed. Marc Duldig. Singapore: World Scientific Publishing Co, 2006. P. 115—124. https://doi.org/10.1142/9789812707185_0009
  27. Modzelewska R., Alania M.V. The 27-day cosmic ray intensity variations during solar minimum 23/24 // Solar Phys. V. 286. № 2. P. 593—607. 2013. https://doi.org/10.1007/s11207-013-0261-4
  28. Monk A.T., Compton A.H. Recurrence phenomena in cosmic-ray intensity // Rev. Mod. Phys. V. 11. № 3—4. P. 173—179. 1939. https://doi.org/10.1103/RevModPhys.11.173
  29. Mordvinov A.V., Yazev S.A. Reversals of the Sun’s polar magnetic fields in relation to activity complexes and coronal holes // Solar Phys. V. 289. № 6. P. 1971—1981. 2014. https://doi.org/10.1007/s11207-013-0456-8
  30. Obridko V.N., Pipin V.V., Sokoloff D., Shibalova A.S. Solar large-scale magnetic field and cycle patterns in solar dynamo // Mon. Not. R. Astron. Soc. V. 504. № 4. P. 4990—5000. 2021. https://doi.org/10.1093/mnras/stab1062
  31. Petrie G.J.D., Petrovay K., Schatten K. Solar polar fields and the 22-year activity cycle: observations and models // Space Sci. Rev. V. 186. № 1—4. P. 325—357. 2014. https://doi.org/10.1007/s11214-014-0064-4
  32. Thalmann J.K., Su Y., Temmer M., Veronig A.M. The confined X-class flares of solar active region 2192 // Astrophys. J. Lett. V. 801. № 2. ID L23. 2015. https://doi.org/10.1088/2041-8205/801/2/L23
  33. Sheeley Jr.N.R., Wang Y.-M. The recent rejuvenation of the Sun’s large-scale magnetic field: a clue for understanding past and future sunspot cycles // Astrophys. J. V. 809. № 2. ID113. 2015. https://doi.org/10.1088/0004-637X/809/2/113
  34. Shlyk N.S, Belov A.V., Abunina M.A., Abunin A.A., Oleneva V.A., Yanke V.G. Forbush decreases caused by paired interacting solar wind disturbances // Mon. Not. R. Astron. Soc. V. 511. № 4. P. 5897—5908. 2022. https://doi.org/10.1093/mnras/stac478
  35. Sun X., Hoeksema J.T., Liu Ya., Zhao Ju. On polar magnetic field reversal and surface flux transport during solar cycle 24 // Astrophys. J. V. 798. № 2. ID114. 2015. https://doi.org/10.1088/0004-637X/798/2/114
  36. Svalgaard L., Kamide Y. Asymmetric solar polar field reversals // Astrophys. J. V. 763. № 1. ID23. 2013. https://doi.org/10.1088/0004-637X/763/1/23
  37. Vallarta M.S., Godart O. A theory of world-wide periodic variations of the intensity of cosmic radiation // Rev. Mod. Phys. V. 11. № 3—4. P. 180—189. 1939. https://doi.org/10.1103/RevModPhys.11.180

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Variations of GCL (with a hardness of 10 GW) for 2012-2017 according to a network of neutron monitors with a sliding 27-day averaging. The period under study is highlighted by a rectangle.

Download (106KB)
3. Fig. 2. Variations of the absorbed dose of HCL according to the data of the RAD detector on Mars and variations of CL according to the network of NM ground stations for the period March 2014 — July 2015.

Download (92KB)
4. Fig. 3. The magnitude of the polar field for the period from November 14, 2011 to December 7, 2016 according to the WSO observatory. N is the magnetic field in the Northern Hemisphere, S is in the Southern hemisphere, Avg is the average value (modulo), Avgf is the average value using a low—pass filter (http://wso.stanford.edu/Polar.html ).

Download (135KB)
5. Fig. 4. The magnitude of the magnetic dipole in the Sun in 2011-2018. The gray curve is the equatorial dipole, the black one is the axial dipole.

Download (73KB)
6. Fig. 5. Variations in the density of CL with a hardness of 10 GW (upper panel, right scale, daily average values) and the magnitude of the magnetic field (lower panel, left scale): dark gray curve — the field on the surface of the source (Br) at the point where the solar wind is directed to the Earth, light gray — the radial component of the MMP (Bx), the black one is the MMP module (B).

Download (77KB)
7. Fig. 6. From left to right: the magnetic field at the photosphere level, the field on the surface of the source, the quadrupole field on the photosphere. Here and further on in the drawings, dark gray isolines indicate the direction of the magnetic lines from the Sun, light gray ones - towards the Sun, the neutral line is indicated by a black curve.

Download (228KB)
8. Fig. 7. Integral images of the Sun from September 9, 2014 (left) and November 7, 2014 (right), adapted from the website: https://www.solen.info/solar/

Download (142KB)
9. 8. Synoptic maps of the magnetic field on the surface of the photosphere (top) and on the surface of the source (bottom), centered on November 9, 2014. Heliographic longitudes are plotted along the horizontal axis, and latitudes (in degrees) are plotted along the vertical axis. The circles show the bases of the open lines of force.

Download (188KB)
10. Fig. 9. The magnetic field on the sphere on the surface of the source (left) and the dipole field (right, harmonic with L =1).

Download (89KB)
11. Fig. 10. Distribution of the MMP polarity over 27-day periods (according to Bartels) for 2014-2015. On the upper scale are the days of Bartels' turnover. The rectangle highlights the period under discussion.

Download (237KB)
12. Fig. 11. Variations in the velocity of CB and MMP induction near the Earth (sliding 27-day averaging) in 2014-2015.

Download (65KB)
13. Fig. 12. The relationship of the magnitude of the modulation of the CL flow (A0,%) from the sign of the equatorial component of the MMP (Bx, nTl) for the period September 2014 — February 2015.

Download (88KB)
14. Fig. 13. Screenshot of the multi-KVM distribution model (according to the data http://helioweather.net ) at the beginning of September 2014, the white line shows the position of the heliospheric current layer, the black lines show the boundaries of the KVM.

Download (92KB)

Copyright (c) 2024 Russian Academy of Sciences