Аномальные квазирекуррентные вариации космических лучей в сентябре 2014 – феврале 2015 г.
- Авторы: Шлык Н.С.1, Белов А.В.1, Обридко В.Н.1, Абунина М.А.1, Абунин А.А.1
-
Учреждения:
- Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН)
- Выпуск: Том 64, № 2 (2024)
- Страницы: 240-252
- Раздел: Статьи
- URL: https://ruspoj.com/0016-7940/article/view/650943
- DOI: https://doi.org/10.31857/S0016794024020073
- EDN: https://elibrary.ru/DYVLAX
- ID: 650943
Цитировать
Аннотация
Исследована аномалия поведения галактических космических лучей в сентябре 2014 г. — феврале 2015 г., проявившаяся в значительной модуляции их потока с периодом, близким к периоду вращения Солнца. Проанализировано состояние солнечного магнитного поля, изменение параметров солнечного ветра и межпланетного магнитного поля в указанный период. Обсуждаются причины возникновения долготной асимметрии в распределении галактических космических лучей во внутренней гелиосфере. Установлено, что исследуемый период делится на две части с различными физическими условиями на Солнце. Получены выводы об определяющем совместном влиянии спорадических и рекуррентных событий: многократно возобновляемых “магнитных ловушек”, созданных последовательными корональными выбросами масс из одной долготной зоны, и аномально расширившимися полярными корональными дырами с усиленным магнитным полем.
Полный текст

Об авторах
Н. С. Шлык
Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН)
Автор, ответственный за переписку.
Email: nshlyk@izmiran.ru
Россия, Москва, Троицк
А. В. Белов
Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН)
Email: nshlyk@izmiran.ru
Россия, Москва, Троицк
В. Н. Обридко
Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН)
Email: nshlyk@izmiran.ru
Россия, Москва, Троицк
М. А. Абунина
Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН)
Email: nshlyk@izmiran.ru
Россия, Москва, Троицк
А. А. Абунин
Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН)
Email: nshlyk@izmiran.ru
Россия, Москва, Троицк
Список литературы
- Алания М.В., Шаташвили Л.X. Квазипериодические вариации космических лучей. Тбилиси: Мецниереба, 1974. 136 с.
- Базилевская Г.А., Охлопков В.П., Чарахчьян Т.Н. Исследования 27-дневных вариаций космических лучей и их связи с неравномерным распределением активных областей на Солнце // Труды ФИАН. 1976. Т. 88. С. 94—113.
- Безродных И.П., Морозова Е.И., Петрукович А.А., Кожухов М.А Динамика солнечной и геомагнитной активности. III. Солнечная и геомагнитная активность в 24 цикле. Реконструкция динамики солнечной и геомагнитной активности // Вопросы электромеханики. Труды ВНИИЭМ. 2019. Т. 172. № 5. С. 10—24.
- Белов А.В. Вспышки, выбросы, протонные события // Геомагнетизм и аэрономия. 2017. Т. 57. № 6. С. 783—793. https://doi.org/10.7868/S0016794017060025
- Белов А.В., Ерошенко Е.А., Янке В.Г., Оленева В.А., Абунина М.А., Абунин А.А. Метод глобальной съемки для мировой сети нейтронных мониторов // Геомагнетизм и аэрономия. 2018. Т. 58. № 3. С. 374—389. https://doi.org/10.7868/S0016794018030082
- Белов А.В., Белова Е.А., Шлык Н.С., Абунина М.А., Абунин А.А. Геоэффективность спорадических явлений в 24 солнечном цикле // Геомагнетизм и аэрономия. 2023. Т. 63. № 4. С. 534—544. https://doi.org/10.31857/S0016794023600291
- Дорман Л.И. Вариации космических лучей и исследование космоса. М.: Изд-во АН СССР, 1963. 1028 с.
- Дорман Л.И., Фейнберг Е.Л. Вариации космических лучей // Успехи физических наук. 1956. Т. 59. № 2. С. 189—228. https://doi.org/10.3367/UFNr.0059.195606a.0189
- Ишков В.Н. Итоги и уроки 24 цикла — первого цикла второй эпохи пониженной солнечной активности // Астрон. журн. 2022. Т. 99. № 1. С. 54—69. https://doi.org/10.31857/S0004629922020050
- Обридко В.Н., Шельтинг Б.Д., Харшиладзе А.Ф. Расчеты межпланетного магнитного поля по данным о его величине в фотосфере солнца // Геомагнетизм и аэрономия. 2006. Т. 46. № 3. С. 310—319.
- Пишкало Н.И., Лейко У.М. Динамика околополярного магнитного поля Солнца в максимуме 24-го цикла // Кинематика и физика небесных тел. 2016. Т. 32. № 2. С. 37—47.
- Сдобнов В.Е., Кравцова М.В., Олемской С.В. Модуляционное влияние коротирующей магнитной ловушки на 27-дневные вариации космических лучей в ноябре — декабре 2014 г. // Солнечно-земная физика. 2019. Т. 5. № 1. С. 13—16. https://doi.org/10.12737/szf-51201902
- Шлык Н.С., Белов А.В., Абунина М.А., Ерошенко Е.А., Абунин А.А., Оленева В.А., Янке В.Г. Влияние взаимодействующих возмущений солнечного ветра на вариации галактических космических лучей // Геомагнетизм и аэрономия. 2021. Т. 61. № 6. С. 694—703. https://doi.org/10.31857/S0016794021060134
- Altukhov A.M., Okhlopkov V.P., Charakhchyan T.N., Bazilevskaia G.A. The relationship between high speed solar wind streams and 27-day cosmic ray variation / Proc. 15th ICRC. Plovdiv, Bulgaria, August 13—26, 1977. V. 3. P. 247—251.
- Belov A.V. Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena // Universal Heliophysical Processes: proceedings of the International Astronomical Union, IAU Symposium. 2008. V. 4. Symp. S257. P. 439—450. https://doi.org/10.1017/S1743921309029676
- Belov A.V., Shlyk N.S., Abunina M.A., Belova E.A., Abunin A.A., Papaioannou A. Solar energetic particle events and Forbush decreases driven by the same solar sources // Universe. 2022. V. 8. № 8. ID403. https://doi.org/10.3390/universe8080403
- Broxon J.W. Recurrence phenomena in cosmic-ray intensity // Phys. Rev. 1941. V. 59. № 10. P. 773—776. https://doi.org/10.1103/PhysRev.59.773
- Chen H., Zhang J., Ma S., Yang S., Li L., Huang X., Xiao J. Confined flares in solar active region 12192 from 2014 October 18 to 29 // Astrophys. J. Lett. 2015. V. 808. № 1. ID L24. https://doi.org/10.1088/2041-8205/808/1/L24
- Gil A., Mursula K. Exceptionally strong variation of galactic cosmic ray intensity at solar rotation period after the maximum of solar cycle 24 // Proc. 34th ICRC, Hague, Netherlands, July 30 – August 6, 2015. V. 236. ID149. https://doi.org/10.22323/1.236.0149
- Gil A., Alania M.V. Energy spectrum of the recurrent variation of galactic cosmic rays during the solar minimum of cycles 23/24 // Solar Phys. 2016. V. 291. № 6. P. 1877—1886. https://doi.org/10.1007/s11207-016-0924-z
- Dumbović M., Heber B., Vršnak B., Temmer M., Kirin A. An analytical diffusion–expansion model for Forbush decreases caused by flux ropes // Astrophys. J. V. 860. № 1. ID71. 2018. https://doi.org/10.3847/1538-4357/aac2de
- Hassler D.M., Zeitlin C., Wimmer-Schweingruber R.F., et al. Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover // Science. V. 343. № 6169. ID1244797. 2014. https://doi.org/10.1126/science.1244797
- Karna N., Hess Webber S.A., Pesnell W.D. Using polar coronal hole area measurements to determine the solar polar magnetic field reversal in solar cycle 24 // Solar Phys. V. 289. № 9. P. 3381—3390. 2014. https://doi.org/10.1007/s11207-014-0541-7
- Korsos M.B., Ruderman M.S., Erdelyi R. An application of the weighted horizontal magnetic gradient to solar compact and eruptive events // Adv. Space Res. V. 61. № 2. P. 595—602. 2018. https://doi.org/10.1016/j.asr.2017.05.023
- Laster H., Lenchek A.M., Singer S.F. Forbush decreases produced by diffusive deceleration mechanism in interplanetary space // J. Geophys. Res. V. 67. № 7. P. 2639—2643. 1962. https://doi.org/10.1029/JZ067i007p02639
- Munakata K., Yasue S., Kato C., Kota J., Tokumaru M., Kojima M., Darwish A.A., Kuwabara T., Bieber J.W. On the cross-field diffusion of galactic cosmic rays into an ICME // Advances in Geosciences. V. 2. Solar Terrestrial. Ed. Marc Duldig. Singapore: World Scientific Publishing Co, 2006. P. 115—124. https://doi.org/10.1142/9789812707185_0009
- Modzelewska R., Alania M.V. The 27-day cosmic ray intensity variations during solar minimum 23/24 // Solar Phys. V. 286. № 2. P. 593—607. 2013. https://doi.org/10.1007/s11207-013-0261-4
- Monk A.T., Compton A.H. Recurrence phenomena in cosmic-ray intensity // Rev. Mod. Phys. V. 11. № 3—4. P. 173—179. 1939. https://doi.org/10.1103/RevModPhys.11.173
- Mordvinov A.V., Yazev S.A. Reversals of the Sun’s polar magnetic fields in relation to activity complexes and coronal holes // Solar Phys. V. 289. № 6. P. 1971—1981. 2014. https://doi.org/10.1007/s11207-013-0456-8
- Obridko V.N., Pipin V.V., Sokoloff D., Shibalova A.S. Solar large-scale magnetic field and cycle patterns in solar dynamo // Mon. Not. R. Astron. Soc. V. 504. № 4. P. 4990—5000. 2021. https://doi.org/10.1093/mnras/stab1062
- Petrie G.J.D., Petrovay K., Schatten K. Solar polar fields and the 22-year activity cycle: observations and models // Space Sci. Rev. V. 186. № 1—4. P. 325—357. 2014. https://doi.org/10.1007/s11214-014-0064-4
- Thalmann J.K., Su Y., Temmer M., Veronig A.M. The confined X-class flares of solar active region 2192 // Astrophys. J. Lett. V. 801. № 2. ID L23. 2015. https://doi.org/10.1088/2041-8205/801/2/L23
- Sheeley Jr.N.R., Wang Y.-M. The recent rejuvenation of the Sun’s large-scale magnetic field: a clue for understanding past and future sunspot cycles // Astrophys. J. V. 809. № 2. ID113. 2015. https://doi.org/10.1088/0004-637X/809/2/113
- Shlyk N.S, Belov A.V., Abunina M.A., Abunin A.A., Oleneva V.A., Yanke V.G. Forbush decreases caused by paired interacting solar wind disturbances // Mon. Not. R. Astron. Soc. V. 511. № 4. P. 5897—5908. 2022. https://doi.org/10.1093/mnras/stac478
- Sun X., Hoeksema J.T., Liu Ya., Zhao Ju. On polar magnetic field reversal and surface flux transport during solar cycle 24 // Astrophys. J. V. 798. № 2. ID114. 2015. https://doi.org/10.1088/0004-637X/798/2/114
- Svalgaard L., Kamide Y. Asymmetric solar polar field reversals // Astrophys. J. V. 763. № 1. ID23. 2013. https://doi.org/10.1088/0004-637X/763/1/23
- Vallarta M.S., Godart O. A theory of world-wide periodic variations of the intensity of cosmic radiation // Rev. Mod. Phys. V. 11. № 3—4. P. 180—189. 1939. https://doi.org/10.1103/RevModPhys.11.180
Дополнительные файлы
