Crystals of linear acenes: features of vapor phase growth and some properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of the crystallization studies of anthracene, tetracene, and pentacene under conditions of vapor phase transport in growth systems with single- and two-zone thermal fields are presented. The features of the phase behavior and thermal stability of the compounds were studied by using the methods of differential scanning calorimetry and thermogravimetric analysis to establish the heating regimes of substances ensuring crystal growth without damage from chemical degradation. Conditions for growing crystals of centimeter scale (0.2–2 cm) were determined for growth systems with single- and two-zone thermal fields. Based on the grown pentacene crystals, a series of field-effect transistors with top drain/source electrodes and top gate were fabricated and their electrical characteristics were studied.

Full Text

Restricted Access

About the authors

A. A. Kulishov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Author for correspondence.
Email: adakyla1255@gmail.com
Russian Federation, Moscow

G. A. Yurasik

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: adakyla1255@gmail.com
Russian Federation, Moscow

M. S. Lyasnikova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: adakyla1255@gmail.com
Russian Federation, Moscow

A. S. Lesnikov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: adakyla1255@gmail.com
Russian Federation, Moscow

V. A. Postnikov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Russian Federation, Moscow

References

  1. Birks J.B. The Theory and Practice of Scintillation Counting. Pergamon Press Ltd, 1967. 662 с.
  2. Красовицкий Б.М., Болотин Б.М. Органические люминофоры. М.: Химия, 1984. 336 с.
  3. Butko V.Y., Chi X., Ramirez A.P. // Solid State Commun. 2003. V. 128. P. 431. https://doi.org/10.1016/j.ssc.2003.08.041
  4. Takahashi T., Takenobu T., Takeya J., Iwasa Y. // Adv. Funct. Mater. 2007. V. 17. P. 1623. https://doi.org/10.1002/adfm.200700046
  5. Yu X., Kalihari V., Frisbie C.D. et al. // Appl. Phys. Lett. 2007. V. 90. P. 2005. https://doi.org/10.1063/1.2724895
  6. Bittle E.G., Biacchi A.J., Fredin L.A. et al. // Commun. Phys. 2019. V. 2. P. 29.
  7. https://doi.org/10.1038/s42005-019-0129-5
  8. Dong J., Yu P., Arabi S.A. et al. // Nanotechnology. 2016. V. 27. P. 1. https://doi.org/10.1088/0957-4484/27/27/275202
  9. Kim H.S., Kim S., Koo J.Y., Choi H.C. // J. Mater. Chem. C. 2021. V. 9. P. 1911. https://doi.org/10.1039/d0tc04698a
  10. Давыдов А.С. Теория поглощения света в молекулярных кристаллах. Киев: Издательство Академии наук УССР, 1951. 176 с.
  11. Ambrosio F., Wiktor J., Landi A., Peluso A. // J. Phys. Chem. Lett. 2023. V. 14. P. 3343. https://doi.org/10.1021/acs.jpclett.3c00191
  12. Кулишов А.А. Особенности роста кристаллов линейных сопряженных молекул из гомологических семейств аценов и олигофениленов. Дис. … канд. физ.-мат. наук. М.: ФНИЦ “Кристаллография и фотоника” РАН, 2022.
  13. Kulishov A.A., Yurasik G.A., Grebenev V.V., Postnikov V.A. // Crystallography Reports. 2022. V. 67. P. 1001. https://doi.org/10.1134/S1063774522060153
  14. Постников В.А., Кулишов А.А., Юрасик Г.А., Лебедев-Степанов П.В. // Кристаллография. 2022. Т. 67. С. 652. https://doi.org/10.31857/S0023476122040130
  15. Laudise R., Kloc C., Simpkins P.G., Siegrist T. // J. Cryst. Growth. 1998. V. 187. P. 449. https://doi.org/10.1016/S0022-0248(98)00034-7
  16. Postnikov V.A., Sorokina N.I., Lyasnikova M.S. et al. // Crystals. 2020. V. 10. P. 363. https://doi.org/10.3390/cryst10050363
  17. Lidberg R.L. “Time-of-Flight Investigation of Charge Carrier Mobilities in Oligoacene Single Crystals” PhD Thesis. University of Minnesota, 2017.
  18. Roberson L.B., Kowalik J., Tolbert L.M. et al. // J. Am. Chem. Soc. 2005. V. 127. P. 3069. https://doi.org/10.1021/ja044586r
  19. Jo S., Takenaga M. // Jpn. J. Appl. Phys. 2010. V. 49. P. 078002. https://doi.org/10.1143/JJAP.49.078002
  20. Jo S., Kajiwara K., Takenaga M. // Jpn. J. Appl. Phys. 2014. V. 53. P. 115506. https://doi.org/10.7567/JJAP.53.115506
  21. Postnikov V.A., Kulishov A.A., Yurasik G.A. et al. // Crystals. 2023. V. 13. P. 999. https://doi.org/10.3390/cryst13070999
  22. Park C., Park J.E., Choi H.C. // Acc. Chem. Res. 2014. V. 47. P. 2353. https://doi.org/10.1021/ar5000874
  23. Courté M., Ye J., Jiang H. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 19855. https://doi.org/10.1039/d0cp03109g
  24. Постников В.А., Сорокина Н.И., Кулишов А.А. и др. // Кристаллография. 2023. Т. 68. С. 120. https://doi.org/10.31857/S0023476123010228
  25. Nečas D., Klapetek P. Gwiddion: 2.59.
  26. De Boer R.W.I., Gershenson M.E., Morpurgo A.F., Podzorov V. // Phys. Status Solidi Appl. Res. 2004. V. 201. P. 1302. https://doi.org/10.1002/pssa.200404336
  27. Kahouli A. // J. Appl. Phys. 2012. V. 112. P. 064103. https://doi.org/10.1063/1.4752022
  28. Tsumura A., Koezuka H., Ando T. // Appl. Phys. Lett. 1986. V. 49. P. 1210. https://doi.org/10.1063/1.97417
  29. Рабинович В.А., Хавин З.Я. Краткий химический справочник. Л.: Химия, 1978. 392 с.
  30. Fulem M., Laštovka V., Straka M. et al. // J. Chem. Eng. Data. 2008. V. 53. P. 2175. https://doi.org/10.1021/je800382b.
  31. Чернов А.А., Гиваргизов Е.И., Багдасаров Х.С. и др. Современная кристаллография. Т. 3. Образование кристаллов. М.: Наука, 1980.
  32. Постников В.А., Кулишов А.А., Лясникова М.С. и др. // Кристаллография. 2021. Т. 66. С. 494. https://doi.org/10.31857/s0023476121030206

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Temperature field profiles inside a growth furnace with one (a) and two (b) thermal zones

Download (226KB)
3. Fig. 2. Scheme of the OPT device (a), optical image of the OPT based on a single crystal of pentacene before applying the gate electrode (b)

Download (221KB)
4. Fig. 3. TGA (solid) and DSC (dotted) curves of anthracene (1), tetracene (2) and pentacene (3)

Download (111KB)
5. Fig. 4. Anthracene crystals deposited at different source temperatures (shooting under UV illumination) on Al foil at TS = 403K (a) and TS = 443 K (b); distribution of deposited anthracene crystals on the surface of a quartz tube after a growth cycle at TS = 433 K (dotted area on the right – enlarged image of the crystal deposition zone near the source) (b)

Download (303KB)
6. Fig. 5. Topographic AFM images of the surface of the developed face of anthracene crystals: a – a surface area with growth steps of 6-8 nm in height; b – a surface area with an elementary growth step of ~ 1 nm in height. The images show the profiles of growth stages with a height of ~3 (a) and ~1 nm (b)

Download (268KB)
7. Fig. 6. Images of tetracene crystals grown at different temperatures of the TS source: 513 (a), 533 (b) and 553K (c)

Download (478KB)
8. Fig. 7. Confocal (a) and topographic AFM image (b) of the surface areas of a tetracene crystal grown at TS = 488 K. The AFM image shows a surface profile with a marked step height of ~18 nm

Download (191KB)
9. Fig. 8. Pentacene crystals deposited on foil (TS = 563 K). The distances from the center of the source with the substance are indicated at the top

Download (640KB)
10. Fig. 9. Distribution of the average density of anthracene (a) and tetracene (b) crystals in a gradient thermal field at different source temperatures. Maxima 1 and 2 characterize the deposition regions of the largest and smallest crystals, respectively

Download (287KB)
11. Fig. 10. Dependence on the temperature of the source of the averaged values of the length and growth rate of anthracene (a) and tetracene (b) crystals in a single-zone thermal field

Download (119KB)
12. Fig. 11. Schematic phase diagram to explain the features of crystallization of crystals from steam in a temperature gradient field; solid curve is the crystal–vapor phase equilibrium line, dotted line is the boundary of the supersaturated vapor metastability region, black arrows indicate the path of crystallization

Download (107KB)
13. Fig. 12. Supercooling of steam (ΔT1 = TS – Tm1) over a cluster of large anthracene (a) and tetracene (b) crystals as a function of source temperature

Download (91KB)
14. Fig. 13. Distribution of anthracene crystals in a quartz growth tube after an experimental cycle in a two-band thermal field (T1 = 433, T2 = 373 K) (a); the largest anthracene crystals grown at T2 = 373 (b), T2 = 383 (c) and T2 = 393 K (d); image of the deposition area of the largest crystals between the two zones at 403 K (d). The photos were taken under UV illumination

Download (293KB)
15. Fig. 14. Dependence of the average values of the thickness (1) and length (2) of anthracene crystals on the temperature difference ΔT1.2 between the zones (T1 = 433 K)

Download (87KB)
16. Fig. 15. Distribution of tetracene crystals in the growth tube after an experimental cycle in a two–band thermal field (T1 = 533, T2 = 463 K) (a); b, c – enlarged images of sections of the growth tube in the vicinity marked with arrows I and II, respectively, in the upper photo; d - the largest of the crystals obtained tetracene; e is an enlarged image of the section of the crystal edge shown in Fig. (d)

Download (347KB)
17. Fig. 16. Pentacene crystals grown in a two-band thermal field at T1 = 553 K: fragments of a crystal grown at T2 = 493 K for 72 hours (a) and an enlarged image of its edge (b); crystals grown at T2 = 513 K for 120 hours (c) and an enlarged images of the edge section of one of the crystals (d)

Download (671KB)
18. Fig. 17. Topographic AFM image of a section of the surface of a pentacene crystal grown at T2 = 493 K. The insert at the top shows an enlarged image of the area highlighted at the bottom with a white dotted line with an island ~2.5 nm high

Download (231KB)
19. Fig. 18. Transfer (a) and output (b) volt-ampere characteristics of an OPT based on a pentacene single crystal

Download (175KB)

Copyright (c) 2024 Russian Academy of Sciences