Co-Cultivation of Fungi and Microalgae for Biotechnology
- Authors: Oghanesyan N.A.1, Kurakov A.V.2, Khachaturyan N.V.1, Gevorgyan S.A.1, Matevosyan R.E.3, Bagiyan V.A.1
-
Affiliations:
- Armbiotechnology Scientific and Production Center of the National Academy of Sciences of Armenia
- Lomonosov Moscow State University
- Yerevan State University
- Issue: Vol 58, No 6 (2024)
- Pages: 435-445
- Section: REVIEWS AND DISCUSSIONS
- URL: https://ruspoj.com/0026-3648/article/view/655923
- DOI: https://doi.org/10.31857/S0026364824060029
- EDN: https://elibrary.ru/uoioqc
- ID: 655923
Cite item
Abstract
The review examines the results of studies of the last decade on the co-cultivation of fungi and microalgae. It outlines the mechanisms of interaction between fungi and microscopic algae during associative cultivation and briefly discusses the methods for the formation of flocs. Key importance for biotechnology is the ability of fungi and algae to form granules (floccules), which are easy to separate from the culture liquid. The synergistic effect of these relationships results in a higher level of biomass accumulation, synthesis of lipids, polyunsaturated fatty acids, and other metabolites, as well as the removal of various pollutants from wastewater. By selecting specific strains and optimizing cultivation conditions, it is possible to enhance the composition of the resulting products. So far, mostly successful laboratory experiments have been carried out in this direction, which need to be expanded and transferred to production projects. For large-scale application of these systems, it is necessary to continue research into the mechanisms of interaction between fungi and microalgae, their metabolism, regulation of biosynthetic processes using modern methods of metabolomics and proteomics, and to develop engineering solutions for their cultivation.
Keywords
Full Text

About the authors
N. A. Oghanesyan
Armbiotechnology Scientific and Production Center of the National Academy of Sciences of Armenia
Author for correspondence.
Email: nelliog@yahoo.fr
Armenia, Yerevan
A. V. Kurakov
Lomonosov Moscow State University
Email: kurakov57@mail.ru
Russian Federation, Moscow
N. V. Khachaturyan
Armbiotechnology Scientific and Production Center of the National Academy of Sciences of Armenia
Email: nun-khach@yandex.ru
Armenia, Yerevan
S. A. Gevorgyan
Armbiotechnology Scientific and Production Center of the National Academy of Sciences of Armenia
Email: sgevork@yahoo.com
Armenia, Yerevan
R. E. Matevosyan
Yerevan State University
Email: matevosyanruzanna@ysu.am
Armenia, Yerevan
V. A. Bagiyan
Armbiotechnology Scientific and Production Center of the National Academy of Sciences of Armenia
Email: valbeg@mail.ru
Armenia, Yerevan
References
- Al-Juburi W.J., Khalil M.I., Al-Katib M.A. Synergistic efficiency between types of fungi and algae for wastewater treatment. J. Res. Appl. Sci. Biotechnol. 2022. V. 1 (4). P. 181– 186. https://doi.org/10.55544/jrasb.1.4.26
- Ashtiani F.R., Jalili H., Rahaie M. et al. Effect of mixed culture of yeast and microalgae on acetyl-CoA carboxylase and Glycerol-3-phosphate acyltransferase expression. J. Biosci. Bioengin. 2021. V. 131. (4). P. 364–372. https://doi.org/10.1016/j.jbiosc.2020.11.006
- Bodin H., Daneshvar A., Gros M. et al. Effects of biopellets composed of microalgae and fungi on pharmaceuticals present at environmentally relevant levels in water. Ecol. Engin. 2016. V. 91. P. 169–172. https://doi.org/10.1016/j.ecoleng.2016.02.007
- Branyikova I., Prochazkova G., Potocar T. et al. Harvesting of microalgae by flocculation. Fermentation. 2018. V. 4 (4). Art. 93. https://doi.org/10.3390/fermentation4040093
- Braun S., Vecht-Lifshitz S.E. Mycelial morphology and metabolite production. Trends Biotechnol. 1991. V. 9 (1). P. 63–68.
- Brenner K., You L., Arnold F.H. Engineering microbial consortia: a new frontier in synthetic biology. Trends. Biotechnol. 2008. V. 26 (9). P. 483–489. https://doi.org/10.1016/j.tibtech.2008.05.004
- Cheirsilp B., Suwannarat W., Niyomdecha R. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. New Biotechnol. 2011. V. 28 (4). P. 362–368. https://doi.org/10.1016/j.nbt.2011.01.004
- Chu R., Li S., Yin Z. et al. A fungal immobilization technique for efficient harvesting of oleaginous microalgae: key parameter optimization, mechanism exploration and spent medium recycling. Sci. Total Environm. 2021. V. 790. P. 148–174. https://doi.org/10.1016/j.scitotenv.2021.148174
- Du Z.Y., Alvaro J., Hyden B. et al. Enhancing oil production and harvest by combining the marine alga Nannochloropsis oceanica and the oleaginous fungus Mortierella elongata. Biotechnol. for Biofuels. 2018. V. 11. P. 1–16. https://doi.org/10.1186/s13068-018-1172-2
- Espinosa-Ortiz E.J., Rene E.R., Pakshirajan K. et al. Fungal pelleted reactors in wastewater treatment: applications and perspectives. Chem. Engin. J. 2016. V. 283. P. 553–571. https://doi.org/10.1016/j.cej.2015.07.068
- Grimm L.H., Kelly S., Hengstler J. et al. Kinetic studies on the aggregation of Aspergillus niger conidia. Biotechnol. Bioengin. 2004. V. 87 (2). P. 213–218. https://doi.org/10.1002/bit.20130
- Gultom S.O., Zamalloa C., Hu B. Microalgae harvest through fungal pelletization – co-culture of Chlorella vulgaris and Aspergillus niger. Energies. 2014. V. 7 (7). P. 4417–4429. https://doi.org/10.3390/en7074417
- Gultom S.O., Hu B. Review of microalgae harvesting via co-pelletization with filamentous fungus. Energies. 2013. V. 6 (11). P. 5921–5939. https://doi.org/10.3390/en6115921
- Hultberg M., Bodin H. Effects of fungal-assisted algal harvesting through biopellet formation on pesticides in water. Biodegradation. 2018. V. 29. (6). P. 557–565. https://doi.org/10.1007/s10532-018-9852-y
- Hultberg M., Bodin H., Birgersson G. Impact on wastewater quality of biopellets composed of Chlorella vulgaris and Aspergillus niger and lipid content in the harvested biomass. J. Water Resource Protect. 2019. V. 11 (7). P. 831–843. https://doi.org/10.4236/jwarp.2019.117050
- Kadalg N., Pawar P., Prakash G. Co-cultivation of Phaeodactylum tricornutum and Aurantiochytrium limacinum for polyunsaturated omega-3 fatty acids production. Bioresource Technol. 2022. V. 346. Art. 126544.
- Kitcha S., Cheirsilp B. Enhanced lipid production by co-cultivation and co-encapsulation of oleaginous yeast Trichosporonoides spathulata with microalgae in alginate gel beads. Appl. Biochem. Biotechnol. 2014. V. 173. P. 522–534. https://doi.org/10.1007/s12010-014-0859-5
- Kumar N., Banerjee C., Negi S. et al. Microalgae harvesting techniques: updates and recent technological interventions. Critical Rev. Biotechnol. 2023. V. 43 (3). P. 342–368. https://doi.org/10.1080/07388551.2022.2031089
- Lal A., Banerjee S., Das D. Aspergillus sp. assisted bioflocculation of Chlorella MJ 11/11 for the production of biofuel from the algal-fungal co-pellet. Separation and Purification Technol. 2021. V. 272. Art. 118320. https://doi.org/10.1016/j.seppur.2021.118320
- Leng L., Wenting L., Jie C. et al. Co-culture of fungi-microalgae consortium for wastewater treatment: A review. Bioresource Technol. 2021. V. 330 Art. 125008. https://doi.org/10.1016/j.biortech.2021.125008
- Lennen R.M., Pfleger B.F. Microbial production of fatty acid-derived fuels and chemicals. Current Opin. Biotechnol. 2013. V. 24 (6). P. 1044–1053. https://doi.org/10.1016/j.copbio.2013.02.028
- Li H., Yuming Z., Qian L. et al. Co-cultivation of Rhodotorula glutinis and Chlorella pyrenoidosa to improve nutrient removal and protein content by their synergistic relationship. RSC Adv. 2019. V. 9 (25). P. 14331–14342. https://doi.org/10.1039/C9RA01884K
- Li S., Tianyi H., Yanzhe X. et al. A review on flocculation as an efficient method to harvest energy microalgae: mechanisms, performances, influencing factors and perspectives. Renewable and Sustainable Energy Reviews. 2020. V. 131. P. 110005. https://doi.org/10.1016/j.rser.2020.110005
- Luo S., Wu X., Jiang H. et al. Edible fungi-assisted harvesting system for efficient microalgae bio-flocculation. Bioreso. Technol. 2019. V. 282. P. 325–330. https://doi.org/10.1016/j.biortech.2019.03.033
- Magdouli S., Brar S.K., Blais J.F. Co-culture for lipid production: advances and challenges. Biomass and Bioenergy. 2016. V. 92. P. 20–30. https://doi.org/10.1016/j.biombioe.2016.06.003
- Miranda A.F., Ramkumar N., Andriotis C. et al. Applications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnol. for Biofuels. 2017. V. 10. P. 1–23. https://doi.org/10.1186/s13068-017-0798-9
- Muradov N., Mohamed T., Miranda A.F. et al. Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production. Biotechnol. for Diofuels. 2015. V. 8. P. 1–23. https://doi.org/10.1186/s13068-015-0210-6
- Nayak M., Suh W., Lee B. et al. Enhanced carbon utilization efficiency and FAME production of Chlorella sp. HS2 through combined supplementation of bicarbonate and carbon dioxide. Energy Convers. Manag. 2018. V. 156. P. 45–52. https://doi.org/10.1016/j.enconman.2017.11.002
- Papagianni M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv. 2004. V. 22 (3). P. 189–259. https://doi.org/10.1016/j.biotechadv.2003.09.005
- Piercey-Normore M.D., Athukorala S.N. Interface between fungi and green algae in lichen associations. Botany. 2017. V. 95 (10). P. 1005–1014. https://doi.org/10.1139/cjb-2017-0037
- Prajapati S.K., Bhattacharya A., Kumar P. et al. A method for simultaneous bioflocculation and pretreatment of algal biomass targeting improved methane production. Green Chem. 2016. V. 18 (19). P. 5230–5238. https://doi.org/10.1039/c6gc01483f
- Rajendran A., Fox T., Hu B. Nutrient recovery from ethanol co-products by a novel mycoalgae biofilm: attached cultures of symbiotic fungi and algae. J. Chem. Technol. Biotechnol. 2017. V. 92 (7). P. 1766–1776. https://doi.org/10.1002/jctb.5177
- Rashid N., Ryu A.J., Jeong K.J. et al. Co-cultivation of two freshwater microalgae species to improve biomass productivity and biodiesel production. Energy Convers. Manag. 2019. V. 196. P. 640–648. https://doi.org/10.1016/j.enconman.2019.05.106
- Salbitani G., Bolinesi F., Affuso M. et al. Rapid and positive effect of bicarbonate addition on growth and photosynthetic efficiency of the green microalgae Chlorella sorokiniana (Chlorophyta, Trebouxiophyceae). Applied Sciences. 2020. V. 10(13). Art. 4515. https://doi.org/10.3390/app10134515
- Salih F.M. Microalgae tolerance to high concentrations of carbon dioxide: a review. J. Environm. Protection. 2011. V. 2 (5). Art. 648. https://doi.org/10.4236/jep.2011.25074
- Santos C.A., Caldeira M., da Silva T.L. et al. Enhanced lipidic algae biomass production using gas transfer from a fermentative Rhodosporidium toruloides culture to an autotrophic Chlorella protothecoides culture. Bioresource Technol. 2013. V. 138. P. 48–54. https://doi.org/10.1016/j.biortech.2013.03.135
- Shen L., Li Z., Wang J. et al. Characterization of extracellular polysaccharide/protein contents during the adsorption of Cd (II) by Synechocystis sp. PCC6803. Environm. Sci. Pollut. Res. 2018. V. 25. P. 20713–20722. https://doi.org/10.1016/j.gexplo
- Shen N., Chirwa E.M. Live and lyophilized fungi-algae pellets as novel biosorbents for gold recovery: Critical parameters, isotherm, kinetics and regeneration studies. Bioresource Technol. 2020. V. 306. Art. 123041. https://doi.org/10.1016/j.biortech.2020.123041
- Shu C.H., Tsai C.C., Chen K.Y. et al. Enhancing high quality oil accumulation and carbon dioxide fixation by a mixed culture of Chlorella sp. and Saccharomyces cerevisiae. J. Taiwan Instit. Chem. Engineers. 2013. V. 44 (6). P. 936–942. https://doi.org/10.1016/j.jtice.2013.04.001
- Silva A., Delerue-Matos C., Figueiredo S.A. et al. The use of algae and fungi for removal of pharmaceuticals by bioremediation and biosorption processes: a review. Water. 2019. V. 11 (8). Art. 1555. https://doi.org/10.3390/w11081555
- Šimonovicová A., Takáčová A., Šimkovic I. et al. Experimental treatment of hazardous ash waste by microbial consortium Aspergillus niger and Chlorella sp.: decrease of the Ni content and identification of adsorption sites by Fourier-transform infrared spectroscopy. Front. Microbiol. 2021. V. 12. Art. 792987. https://doi.org/10.3389/fmicb.2021.792987
- Slusarczyk J., Adamska E., Czerwik-Marcinkowska J. Fungi and algae as sources of medicinal and other biologically active compounds: a review. Nutrients. 2021. V. 13. Art. 3178. https://doi.org/10.3390/nu13093178
- Smirnov I.A., Lobakova E.S. Morphophysiological characteristics of a mixed culture of Pleurotus ostreatus and nitrogen-fixing cyanobacterium Anabaena variabilis. In: Proceedings of the jubilee conference dedicated to the 100th M.V. Gorlenko anniversary “Higher basidiomycetes: individuals, populations, communities”. Vostok-Zapad, Moscow, 2008, pp. 198–199. (In Russ.).
- Srinuanpan S., Chawpraknoi A., Chantarit S. et al. A rapid method for harvesting and immobilization of oleaginous microalgae using pellet-forming filamentous fungi and the application in phytoremediation of secondary effluent. Int. J. Phytoremediation. 2018. V. 20 (10). P. 1017–1024. https://doi.org/10.1080/15226514.2018.1452187
- Szotkowski M., Holub J., Šimanský S. et al. Bioreactor co-cultivation of high lipid and carotenoid producing yeast Rhodotorula kratochvilovae and several microalgae under stress. Microorganisms. 2021. V. 9 (6). P. 1160. https://doi.org/10.3390/microorganisms9061160
- Takáčová A., Bajuszová M., Šimonovicová A. et al. Biocoagulation of dried algae Chlorella sp. and pellets of Aspergillus niger in decontamination process of wastewater, as a presumed source of biofuel. J. Fungi. 2022. V. 8 (12). Art. 1282. https://doi.org/10.3390/jof8121282
- Vona V., Di Martino Rigano V., Andreoli C. et al. Comparative analysis of photosynthetic and respiratory parameters in the psychrophilic unicellular green alga Koliella antarctica, cultured in indoor and outdoor photo-bioreactors. Physiol. Molec. Biol. Plants. 2018. V. 24. P. 1139–1146.
- Walls L.E., Velasquez-Orta S.B., Romero-Frasca E. et al. Non-sterile heterotrophic cultivation of native wastewater yeast and microalgae for integrated municipal wastewater treatment and bioethanol production. Biochem. Engin. J. 2019. V. 151. Art. 107319. https://doi.org/10.1016/j.bej.2019.107319
- Wang S.K., Yang K.X., Zhu Y.R. et al. One-step co-cultivation and flocculation of microalgae with filamentous fungi to valorize starch wastewater into high-value biomass. Bioresource Technol. 2022. V. 361. Art. 127625. https://doi.org/10.1016/j.biortech.2022.127625
- Wang Y., Yang Y., Ma F. et al. Optimization of Chlorella vulgaris and bioflocculant-producing bacteria co-culture: enhancing microalgae harvesting and lipid content. Lett. Appl. Microbiol. 2015. V. 60. (5). P. 497–503. https://doi.org/10.1111/lam.12403
- Wang J., Chen R., Fan L. et al. Construction of fungi-microalgae symbiotic system and adsorption study of heavy metal ions. Separation Purification Technol. 2021. V. 268. Art. 118689. https://doi.org/10.1016/j.seppur.2021.118689
- Ward O., Singh A. Omega-3/6 fatty acids: alternative sources of production. Process Biochem. 2005. V. 40 (12). P. 3627–3652. https://doi.org/10.1016/j.procbio.2005.02.020
- Wrede D., Taha M., Miranda A.F. et al. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment. PLOS One. 2014. V. 9 (11). e113497. https://doi.org/10.1371/journal.pone.0113497
- Xie S., Su S., Dai S.Y. et al. Efficient coagulation of microalgae in cultures with filamentous fungi. Algal Res. 2013. V. 2 (1). P. 28–33. https://doi.org/10.1016/j.algal.2012.11.004
- Xue F., Miao J., Zhang X. et al. A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis. Appl. Biochem. Biotech. 2010. V. 160. P. 498–503. https://doi.org/10.1007/s12010-008-8376-z
- Yang L., Li H., Wang Q. A novel one-step method for oil-rich biomass production and harvesting by co-cultivating microalgae with filamentous fungi in molasses wastewater. Bioresource Technol. 2019. V. 275. P. 35–43. https://doi.org/10.1016/j.biortech.2018.12.036
- Yen H.W., Chen P.W., Chen L.J. The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation. Bioresource Technol. 2015. V. 184. P. 148–152. https://doi.org/10.1016/j.biortech.2014.09.113
- Zhan J., Rong J., Wang Q. Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. Int. J. Hydrogen Energy. 2017. V. 42 (12). P. 8505–8517. https://doi.org/10.1016/j.ijhydene.2016.12.021
- Zhang J., Zhang J. The filamentous fungal pellet and forces driving its formation. Crit. Rev. Biotechnol. 2016. V. 36 (6). P. 1066–1077. https://doi.org/10.3109/07388551.2015.1084262
- Zhang J., Feng L., Ouyang Y. et al. Phosphate-solubilizing bacteria and fungi in relation to phosphorus availability under different land uses for some latosols from Guangdong, China. Catena. 2020. V. 195. Art. 104686. https://doi.org/10.1016/j.catena.2020.104686
- Zhang Z., Pang Z., Xu S. et al. Improved carotenoid productivity and COD removal efficiency by co-culture of Rhodotorula glutinis and Chlorella vulgaris using starch wastewaters as raw material. Appl. Biochem. Biotechnol. 2019. V. 189. P. 193–205.
- Zhou W., Cheng Y., Li Y. et al. Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Appl. Biochem. Biotechnol. 2012. V. 167. P. 214–228. https://doi.org/10.1007/s12010-012-9667-y
- Zorn S.M., Reis C.E., Silva M.B. et al. Consortium growth of filamentous fungi and microalgae: evaluation of different cultivation strategies to optimize cell harvesting and lipid accumulation. Energies. 2020. V. 13. (14). Art. 3648. https://doi.org/10.3390/en13143648
- Смирнов И.А., Лобакова Е.С. (Smirnov, Lobakova) Морфофизиологическая характеристика смешанной культуры Pleurotus ostreatus и азотофикирующей цианобактерии Anabaena variabilis // Мат-лы юбилейной конф., посв. 100-летию со дня рожд. М.В. Горленко “Высшие базидиальные грибы: индивидуумы, популяции, сообщества”. М.: Восток-Запад, 2008. С. 198–199.
Supplementary files
