Influence of synthesis method on morphology and functional properties of li-rich layered oxides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of the precursor synthesis method on the functional properties of cathode material based on lithium-rich oxides was studied. Precursors were obtained by co-precipitation method (hydroxide and carbonate precursors) and solvothermal method (hydroxide and oxalate precursors). Within the selected synthesis methods, the parameters were changed by varying the precipitant and pH of precipitation during the synthesis by co-precipitation method and the reaction medium/precipitant combinations during the solvothermal synthesis method. The solid-phase reaction of the investigated precursors with lithium source and subsequent high-temperature annealing resulted in lithium-rich layered oxides of the composition Li1.2Ni0.133Mn0.534Co0.133O2. The sample synthesized by solvothermal method exhibits high discharge capacity values of 233.2 mAh/g (0.1 C) and 175.3 mAh/g (0.5 C) with residual discharge capacity of 94 and 80.5%, respectively. The samples with comparable electrochemical performance are similar in morphology. These materials are agglomerated and characterized by a bimodal distribution with maxima in the 14–19 μm and 55–60 μm regions. An approach that takes into account the relationship between morphology and electrochemical properties will allow the preparation of higher performance electrode materials for lithium-ion battery.

Full Text

Restricted Access

About the authors

A. A. Medvedeva

Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences

Author for correspondence.
Email: anna.ev.medvedeva@gmail.com
Russian Federation, Moscow, 119991

E. V. Makhonina

Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences

Email: anna.ev.medvedeva@gmail.com
Russian Federation, Moscow, 119991

M. M. Klimenko

Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences

Email: anna.ev.medvedeva@gmail.com
Russian Federation, Moscow, 119991

Y. A. Politov

Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences

Email: anna.ev.medvedeva@gmail.com
Russian Federation, Moscow, 119991

A. M. Rumyantsev

Ioffe Institute Russian Academy of Sciences

Email: anna.ev.medvedeva@gmail.com
Russian Federation, St Petersburg, 194021

Y. M. Koshtyal

Ioffe Institute Russian Academy of Sciences

Email: anna.ev.medvedeva@gmail.com
Russian Federation, St Petersburg, 194021

A. S. Goloveshkin

Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences

Email: anna.ev.medvedeva@gmail.com
Russian Federation, Moscow, 119334

A. A. Kurlykin

Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences

Email: anna.ev.medvedeva@gmail.com
Russian Federation, Moscow, 119991

References

  1. Masias A., Marcicki J., Paxton W.A. // ACS Energy Lett. 2021. V. 6. № 2. P. 621. https://doi.org/10.1021/acsenergylett.0c02584
  2. Choi D., Shamim N., Crawford A. et al. // J. Power Sources. 2021. V. 511. P. 230419. https://doi.org/10.1016/j.jpowsour.2021.230419
  3. Malhotra A., Battke B., Beuse M. et al. // Renew. Sustain. Energy Rev. 2016. V. 56. P. 705. https://doi.org/10.1016/j.rser.2015.11.085
  4. Nitta N., Wu F., Lee J.T. et al. // Mater. Today. 2015. V. 18. № 5. P. 252. https://doi.org/10.1016/j.mattod.2014.10.040
  5. Murdock B.E., Toghill K.E., Tapia‐Ruiz N. // Adv. Energy Mater. 2021. V. 11. № 39. P. 2102028. https://doi.org/10.1002/aenm.202102028
  6. Ji X., Xia Q., Xu Y. et al. // J. Power Sources. 2021. V. 487. P. 229362. https://doi.org/10.1016/j.jpowsour.2020.229362
  7. Shukla A.K., Ramasse Q.M., Ophus C. et al. // Nat. Commun. 2015. V. 6. № 1. P. 8711. https://doi.org/10.1038/ncomms9711
  8. Genevois C., Koga H., Croguennec L. et al. // J. Phys. Chem. С. 2015. V. 119. № 1. P. 75. https://doi.org/10.1021/jp509388j
  9. Viji M., Budumuru A.K., Hebbar V. et al. // Energy Fuels. 2021. V. 35. № 5. P. 4533. https://doi.org/10.1021/acs.energyfuels.0c04061
  10. Guo L., Tan X., Mao D. et al. // Electrochim. Acta. 2021. V. 370. P. 137808. https://doi.org/10.1016/j.electacta.2021.137808
  11. Bian X., Zhang R., Yang X. // Inorg. Chem. 2020. V. 59. № 23. P. 17535. https://doi.org/10.1021/acs.inorgchem.0c02766
  12. Song B., Liu Z., Lai M.O. et al. // Phys. Chem. Chem. Phys. 2012. V. 14. № 37. P. 12875. https://doi.org/10.1039/c2cp42068f
  13. Hu E., Yu X., Lin R. et al. // Nat. Energy. 2018. V. 3. № 8. P. 690. https://doi.org/10.1038/s41560-018-0207-z
  14. Zheng H., Han X., Guo W. et al. // Mater. Today Energy. 2020. V. 18. P. 100518. https://doi.org/10.1016/j.mtener.2020.100518
  15. Fell C.R., Qian D., Carroll K.J. et al. // Chem. Mater. 2013. V. 25. № 9. P. 1621. https://doi.org/10.1021/cm4000119
  16. Lei Y., Ni J., Hu Z. et al. // Adv. Energy Mater. 2020. V. 10. № 41. P. 2002506. https://doi.org/10.1002/aenm.202002506
  17. Медведева А.Е., Махонина Е.В., Печень Л.С. и др. // Журн. неорган. химии. 2022. V. 67. № 7. P. 896.
  18. Печень Л.С., Махонина Е.В., Медведева А.Е. и др. // Докл. АН. Сер. Химия, науки о материалах. 2022. Т. 502. С. 66.
  19. Печень Л.С., Махонина Е.В., Медведева А.Е. и др. // Неорган. материалы. 2022. Т. 58. № 10. С. 1069.
  20. Fu F., Tang J., Yao Y. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 39. P. 25654. https://doi.org/10.1021/acsami.6b09118
  21. Li H., Wei X., Yang P. et al. // Electrochim. Acta. 2018. V. 261. P. 86. https://doi.org/10.1016/j.electacta.2017.10.119
  22. Fu F., Huang Y., Wu P. et al. // J. Alloys Compd. 2015. V. 618. P. 673. https://doi.org/10.1016/j.jallcom.2014.08.191
  23. Li H., Ren Y., Yang P. et al. // Electrochim. Acta. 2019. V. 297. P. 406. https://doi.org/10.1016/j.electacta.2018.10.195
  24. Luo W. // J. Alloys Compd. 2015. V. 636. P. 24. https://doi.org/10.1016/j.jallcom.2015.02.163
  25. Chen L., Su Y., Chen S. et al. // Adv. Mater. 2014. V. 26. № 39. P. 6756. https://doi.org/10.1002/adma.201402541
  26. Yu R., Zhang X., Liu T. et al. // ACS Sustain. Chem. Eng. 2017. V. 5. № 10. P. 8970. https://doi.org/10.1021/acssuschemeng.7b01773
  27. Kurilenko K.A., Shlyakhtin O.A., Brylev O.A. et al. // Electrochim. Acta. 2015. V. 152. P. 255. https://doi.org/10.1016/j.electacta.2014.11.045
  28. Ramesha R.N., Dasari Bosubabu, Karthick Babu M.G. et al. // ACS Appl. Energy Mater. 2020. V. 3. № 11. P. 10872. https://doi.org/10.1021/acsaem.0c01897
  29. Pechen L., Makhonina E., Medvedeva A. et al. // Nanomaterials. 2022. V. 12. № 22. P. 4054. https://doi.org/10.3390/nano12224054
  30. Pechen L.S., Makhonina E.V., Medvedeva A.E. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 5. P. 777. https://doi.org/10.1134/S0036023621050144
  31. Kleiner K., Strehle B., Baker A.R. et al. // Chem. Mater. 2018. V. 30. № 11. P. 3656. https://doi.org/10.1021/acs.chemmater.8b00163
  32. Strehle B., Kleiner K., Jung R. et al. // J. Electrochem. Soc. 2017. V. 164. № 2. P. A400. https://doi.org/10.1149/2.1001702jes
  33. Phillips P.J., Bareño J., Li Y. et al. // Adv. Energy Mater. 2015. V. 5. № 23. P. 1501252. https://doi.org/10.1002/aenm.201501252
  34. Shen S., Hong Y., Zhu F. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 15. P. 12666. https://doi.org/10.1021/acsami.8b00919
  35. Thackeray M.M., Kang S.-H., Johnson C.S. et al. // J. Mater. Chem. 2007. V. 17. № 30. P. 3112. https://doi.org/10.1039/b702425h

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Supplementary
Download (3MB)
3. Fig. 1. Microphotographs of the precursors: carbonate-based PR-CC (a), oxalate-based PR-S3 (b), and hydroxide-based PR-SH (c), PR-S1 (d), and PR-S2 (e).

Download (694KB)
4. Fig. 2. Microphotographs of the lithiated oxides LR-CC (a), LR-S3 (b), LR-SH (c), LR-S1 (d) and LR-S2 (e).

Download (722KB)
5. Fig. 3. Differential agglomerate size distribution curves for samples based on hydroxide precursors LR-CC, LR-S1, LR-S2 (a), carbonate precursor LR-CC (b) and oxalate precursor LR-S3 (c).

Download (164KB)
6. Fig. 4. Diffractograms of lithiated samples (a), enlarged area 20-25 2θ (b).

Download (255KB)
7. Fig. 5. Dependence of discharge capacity on cycle number for synthesized samples at 0.1C (a) and 0.4C (b).

Download (250KB)
8. Fig. 6. Charge-discharge curves of synthesized samples at 0.4C.

Download (571KB)
9. Fig. 7. Dependences of stress on cycle number (a) and specific energy value (b) for the synthesized samples.

Download (353KB)
10. Fig. 8. Curves of the first derivative of capacitance on voltage from voltage (dQ/dV) for 2 cycles (a) and 67 cycles (b).

Download (310KB)

Copyright (c) 2024 Russian Academy of Sciences