Hysteresis Interference of Defect Fields

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The calculated initial and hysteresis branches of the electric voltage U (H) in a pulsed magnetic field of strength H are presented, corresponding to the branches of magnetization in the operating magnetic field and the residual magnetization of an object made of ferromagnetic material and similar branches of the used magnetic carrier (MC). The impact on an object with MN was carried out by magnetic field pulses to obtain stationary states of magnetization of an object with an internal defect, the field of which is modeled by the field of a linear inductor, the construction of spatial distributions of hysteretic interference (HI) and the creation of programs for calculating HI, which made it possible to increase the accuracy of monitoring the properties of objects.

Texto integral

Acesso é fechado

Sobre autores

V. Pavlyuchenko

Belarusian National Technical University

Email: ess.doroshevich@gmail.com
Belarus, 65, Nezavisimost Ave., 220013, Minsk

E. Darashevich

Belarusian National Technical University

Autor responsável pela correspondência
Email: ess.doroshevich@gmail.com
Belarus, 65, Nezavisimost Ave., 220013, Minsk

Bibliografia

  1. Pavlyuchenko V.V., Doroshevich E.S. Nondestructive control of objects made of electroconductive materials in pulsed magnetic fields // Russian Journal of Nondestructive Testing. 2010. V. 46. No. 1. P. 810—818.
  2. Pavlyuchenko V.V., Doroshevich E.S., Pivovarov V.L. Calculation of residual magnetic-field distributions upon hysteretic interference of a pulsed magnetic field // Russian Journal of Nondestructive Testing. 2015. V. 51. No. 1. P. 8—16.
  3. Pavlyuchenko V.V., Doroshevich E.S. Hysteretic Interference of Magnetic Field of a Moving Linear Inductor // Russian Journal of Nondestructive Testing. 2020. V. 56. No. 1. P. 49—57.
  4. Pavlyuchenko V.V., Doroshevich E.S. Imaging Electric Signals of a Magnetic Field Transducer with Hysteretic Interference for Testing Metals in Pulsed Magnetic Fields // Russian Journal of Nondestructive Testing. 2020. V. 56. No. 11. P. 907—914.
  5. Pavlyuchenko V.V., Doroshevich E.S. Hysteretic Interference of Time-Overlapping Magnetic Field Pulses // Russian Journal of Nondestructive Testing. 2019. V. 55. No. 12. P. 949—956.
  6. Pavlyuchenko V.V., Doroshevich E.S. Differential Background of Electric Signal Readfrom an Induction Magnetic Head // Russian Journal of Nondestructive Testing. 2021. V. 57. No. 8. P. 706—716.
  7. Falkevich A.S. Magnetographic inspection of welded joints. M.: Мashinostroenie, 1966. 176 p.
  8. Kozlov V.S. Magnetic flaw detection technique. Mn.: Vyshaychay shkola, 1976. 256 p.
  9. Mikhailov S.P., Shcherbinin V.E. Physical basis of magnetic flaw detection. M.: Nauka,1992. 238 p.
  10. Muzhitsky V.F. Model of a surface defect and calculation of the topography of its magnetostatic field // Defectoskopiya. 1987. No 3. P. 24—30.
  11. Shleenkov A.S. Determination of geometric parameters of defects from the reconstructed magnetic stray field // Defectoskopiya. 1991. No 10. P. 49—55.
  12. Shcherbinin V.E. Fields of defects on the inner and outer surfaces of pipes under circular magnetization // Defectoskopiya. 1972. No. 2. P. 11.
  13. Kharitonov Yu.N. Integration of pulses with distribution over their duration // Instruments and experimental technique. 1966. No 5. P. 227—228.
  14. Kharitonov Yu.N. Long-term Barkhausen jumps caused by mechanical stresses // Physics of metals and metallurgy. 1968. V. 25. No 5. P. 245—246.
  15. Rudyak V.M. Barkhausen effect in ferromagnets // Scientific Notes оf Kaliningrad State Pedagogical University. 1966. V. 40. P. 49.
  16. Ivlev V.F., Prokopenko V.S. Barkhausen effect in cylindrical iron films // News of Higher Education Institutions. 1962. No 1. P. 154—158
  17. Ivlev V.F., Ilyushenko V.L., Aseeva L.I. Study of irreversible jumps of magnetization reversal in ferromagnets // Bulletin of the Academy of Sciences. 1957. V. 21. No. 9. P. 75.
  18. Rudyak V.M. On the relationship between the Barkhausen effect and the magnitude of residual magnetization // Reports of the Academy of Sciences. 1965. V. 164. No. 4. P. 782.
  19. Vengrinovich V.L. Magnetic noise structuroscopy. Minsk: Science and Technology, 1991. 285 p.
  20. Astakhov V.I., Danilina E.M., Ershov Yu.K. On the issue of diagnostics of a plate with a crack using the eddy current method // Defectoskopiya. 2018. No. 3. P. 39—49.
  21. Pechenkov A.N., Shcherbinin V.E. Eddy currents and fields of conducting and magnetizable spherical inclusions in a non-magnetic medium // Defectoskopiya. 2016. No. 4. P. 48—55.
  22. Novoslugina A.P., Smorodinsky Ya.G. Calculation method for assessing the parameters of defects in steel // Defectoskopiya. 2017. No. 11. P. 13—19.
  23. Pavlyuchenko V.V., Doroshevich E.S. Testing for Defects in Pulsed Magnetic Field Transmitted Through Metal // Russian Journal of Nondestructive Testing. 2021. V. 57. No. 10. P. 856—864.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Forward and reverse branches of U (H) of the object material in the applied field and in the residual magnetisation mode.

Baixar (303KB)
3. Fig. 2. Voltage cycles U (H) of the object in the active field and in the residual magnetisation mode.

Baixar (355KB)
4. Fig. 3. Signal distributions U (x) of object 1 - 7 and optical image of signal 8.

Baixar (274KB)
5. Fig. 4. Voltage cycles U (H) of the MN in the residual magnetisation mode.

Baixar (412KB)
6. Fig. 5. Signal distributions U (x) MN 1 - 8 and optical image of signal 9, 10.

Baixar (298KB)
7. Fig. 6. Voltage cycles U (H) of the object and the dependence of the number of Barkhausen jumps on H.

Baixar (304KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025