Reactivity of monovalent thulium

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It was found that monovalent thulium iodide TmI in the TmIx mixture reacts with hydrogen at 200°C and atmospheric pressure, forming a hydrogenation product [TmIxH], which is confirmed by the reaction with (C6F5)3GeBr, leading to the formation of (C6F5)3GeН. In the reaction with nitrogen at 450°C, a mixture is formed containing diiodide TmI2 and a product of the composition [Tm4IN], containing a Tm–N valence bond. TmI in the TmIx mixture also reacts with phenol and phenylacetylene. In the first case, a difficult-to-separate mixture of iodide phenolates TmIx(OPh)y is formed. The reaction with PhC≡CH leads to the formation of styrene, diphenylbenzene and a mixture of triphenylbenzenes. In the reaction of TmIx with СО2, trivalent thulium iodioxalate (C2O4)TmI(DМЕ).was isolated with a high yield.

Full Text

Restricted Access

About the authors

S. Yu. Bukhvalova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: sv-4.4.1991@iomc.ras.ru
Russian Federation, Nizhny Novgorod

A. A. Fagin

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: sv-4.4.1991@iomc.ras.ru
Russian Federation, Nizhny Novgorod

T. A. Kovylina

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: sv-4.4.1991@iomc.ras.ru
Russian Federation, Nizhny Novgorod

T. I. Kulikova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: sv-4.4.1991@iomc.ras.ru
Russian Federation, Nizhny Novgorod

A. V. Cherkasov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: sv-4.4.1991@iomc.ras.ru
Russian Federation, Nizhny Novgorod

M. N. Bochkarev

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: mboch@iomc.ras.ru
Russian Federation, Nizhny Novgorod

References

  1. Fong F.K., Cape J.A., Wong E.Y. // Phys. Rev. 1966. V. 151. P. 299. https://doi.org/10.1103/PhysRev.151.299
  2. Arnold P.L., Cloke F.G.N., Nixon J.F. // Chem. Commun. 1998. P. 797. https://doi.org/10.1039/A800089A
  3. Li W.-L., Chen T.-T., Chen W.-J. et al. // Nature Commun. 2021. V. 12. P. 6467. https://doi.org/10.1038/s41467-021-26785-9
  4. Ka‶ning M., Hitzschke L., Schalk B. et al. // J. Phys. D. 2011. V. 44. P. 224005. https://doi.org/10.1088/0022-3727/44/22/224005
  5. Ka‶ning M., Schalk B., Schneidenbach H. // J. Phys. D. 2007. V. 40. P. 3815. https://doi.org/10.1088/0022-3727/40/13/S01
  6. Бочкарев М.Н., Фагин А.А., Хорошеньков Г.В. // Изв. АН. Сер. хим. 2002. С. 1757 (Bochkarev M.N., Fagin A.A., Khoroshenkov G.V. // Russ. Chem. Bull. Int. Ed. 2002. V. 51. P. 1909). https://doi.org/10.1023/A:1021364804963
  7. Фагин А.А., Бухвалова С.Ю., Бочкарев М.Н. // Коорд. химия. 2022. Т. 11. С. 686 (Fagin A.A., Bukhvalova S.Yu., Bochkarev M.N. // Russ. J. Coord. Chem. 2022. V. 48. № 11. P. 741). https://doi.org/10.1134/S1070328422110045
  8. Фагин A.A., Бухвалова С.Ю., Куропатов В.А., Бочкарев М.Н. // Коорд. химия. 2023. T. 49. № 5. C. 303 (Fagin A.A., Bukhvalova S.Yu., Kuropatov V.A., Bochkarev M.N. // Russ. J. Coord. Chem. 2023. V. 49. № 5. P. 299). https://doi.org/10.31857/S0132344X22600357
  9. Fagin A.A., Bukhvalova S.Yu., Kovylin R.S., Bochkarev M.N. // Russ. J. General. Chem. 2023. V. 93. Suppl. 3. P. S840. https://doi.org/10.1134/S1070363223160235
  10. Бочкарев М.Н., Протченко А.П. // Приборы и техника эксперимента. 1990. № 1. С. 194.
  11. Бочкарев М.Н., Фагин А.А., Федюшкин И.Л. и др. // Изв. АН. Сер. хим. 1999. № 9. С. 1084 (Bochkarev M.N., Fagin A.A., Fedushkin I.L. et al. // Russ. Chem. Bull. 1999. № 9. P. 1782). https://doi.org/10.1007/BF02494829
  12. Doebelin N., Kleeberg R. // J. Appl. Cryst. 2015. V. 48. P. 1573. https://doi.org/10.1107/S1600576715014685
  13. Гражулис С., Шатейнер Д., Даунс Р.Т., Йокочи А.Ф. и др. // Журн. прикл. кристаллографии. 2009. Т. 42. № 4. С. 726. https://doi.org/10.1107/S0021889809016690
  14. Harris I.R., Raynor G.V. // J. Less-Common Met. 1969. V. 17. P. 336. https://doi.org/10.1016/0022-5088(69)90154-4
  15. Wyckoff R.W.G. Crystal Structures. New York: Interscience Publishers, 1963. V. 1. P. 239.
  16. Бочкарев М.Н., Логунов А.А., Бурин М.Е. // Изв. АН. Сер. хим. 2007. С. 1887 (Bochkarev M.N., Logunov A.A., Burin M.E. // Russ. Chem. Bull. Int. Ed. V. 56. P. 1953). https://doi.org/10.1007/s11172-007-0303-x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental diffraction pattern of a polycrystalline sample of [TmIN] (1); calculated diffraction patterns of TmH2 hydride (2), TmN nitride (3), and metallic Tm (4).

Download (174KB)
3. Fig. 2. Photograph (a) and spectrum (b) of the glow of the reaction of Tm with I2.

Download (161KB)
4. Fig. 3. Fragment of the experimental diffraction pattern of the polycrystalline sample [TmIN] (1); calculated diffraction patterns of the hydride TmH2 (2) and nitride TmN (3) (the intensity values ​​of all points on the diffraction patterns are increased by 15 times).

Download (172KB)
5. Scheme 1

Download (36KB)
6. Scheme 2

Download (30KB)

Copyright (c) 2025 Российская академия наук