Reactivity of monovalent thulium

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It was found that monovalent thulium iodide TmI in the TmIx mixture reacts with hydrogen at 200°C and atmospheric pressure, forming a hydrogenation product [TmIxH], which is confirmed by the reaction with (C6F5)3GeBr, leading to the formation of (C6F5)3GeН. In the reaction with nitrogen at 450°C, a mixture is formed containing diiodide TmI2 and a product of the composition [Tm4IN], containing a Tm–N valence bond. TmI in the TmIx mixture also reacts with phenol and phenylacetylene. In the first case, a difficult-to-separate mixture of iodide phenolates TmIx(OPh)y is formed. The reaction with PhC≡CH leads to the formation of styrene, diphenylbenzene and a mixture of triphenylbenzenes. In the reaction of TmIx with СО2, trivalent thulium iodioxalate (C2O4)TmI(DМЕ).was isolated with a high yield.

Texto integral

Acesso é fechado

Sobre autores

S. Bukhvalova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: sv-4.4.1991@iomc.ras.ru
Rússia, Nizhny Novgorod

A. Fagin

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: sv-4.4.1991@iomc.ras.ru
Rússia, Nizhny Novgorod

T. Kovylina

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: sv-4.4.1991@iomc.ras.ru
Rússia, Nizhny Novgorod

T. Kulikova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: sv-4.4.1991@iomc.ras.ru
Rússia, Nizhny Novgorod

A. Cherkasov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: sv-4.4.1991@iomc.ras.ru
Rússia, Nizhny Novgorod

M. Bochkarev

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: mboch@iomc.ras.ru
Rússia, Nizhny Novgorod

Bibliografia

  1. Fong F.K., Cape J.A., Wong E.Y. // Phys. Rev. 1966. V. 151. P. 299. https://doi.org/10.1103/PhysRev.151.299
  2. Arnold P.L., Cloke F.G.N., Nixon J.F. // Chem. Commun. 1998. P. 797. https://doi.org/10.1039/A800089A
  3. Li W.-L., Chen T.-T., Chen W.-J. et al. // Nature Commun. 2021. V. 12. P. 6467. https://doi.org/10.1038/s41467-021-26785-9
  4. Ka‶ning M., Hitzschke L., Schalk B. et al. // J. Phys. D. 2011. V. 44. P. 224005. https://doi.org/10.1088/0022-3727/44/22/224005
  5. Ka‶ning M., Schalk B., Schneidenbach H. // J. Phys. D. 2007. V. 40. P. 3815. https://doi.org/10.1088/0022-3727/40/13/S01
  6. Бочкарев М.Н., Фагин А.А., Хорошеньков Г.В. // Изв. АН. Сер. хим. 2002. С. 1757 (Bochkarev M.N., Fagin A.A., Khoroshenkov G.V. // Russ. Chem. Bull. Int. Ed. 2002. V. 51. P. 1909). https://doi.org/10.1023/A:1021364804963
  7. Фагин А.А., Бухвалова С.Ю., Бочкарев М.Н. // Коорд. химия. 2022. Т. 11. С. 686 (Fagin A.A., Bukhvalova S.Yu., Bochkarev M.N. // Russ. J. Coord. Chem. 2022. V. 48. № 11. P. 741). https://doi.org/10.1134/S1070328422110045
  8. Фагин A.A., Бухвалова С.Ю., Куропатов В.А., Бочкарев М.Н. // Коорд. химия. 2023. T. 49. № 5. C. 303 (Fagin A.A., Bukhvalova S.Yu., Kuropatov V.A., Bochkarev M.N. // Russ. J. Coord. Chem. 2023. V. 49. № 5. P. 299). https://doi.org/10.31857/S0132344X22600357
  9. Fagin A.A., Bukhvalova S.Yu., Kovylin R.S., Bochkarev M.N. // Russ. J. General. Chem. 2023. V. 93. Suppl. 3. P. S840. https://doi.org/10.1134/S1070363223160235
  10. Бочкарев М.Н., Протченко А.П. // Приборы и техника эксперимента. 1990. № 1. С. 194.
  11. Бочкарев М.Н., Фагин А.А., Федюшкин И.Л. и др. // Изв. АН. Сер. хим. 1999. № 9. С. 1084 (Bochkarev M.N., Fagin A.A., Fedushkin I.L. et al. // Russ. Chem. Bull. 1999. № 9. P. 1782). https://doi.org/10.1007/BF02494829
  12. Doebelin N., Kleeberg R. // J. Appl. Cryst. 2015. V. 48. P. 1573. https://doi.org/10.1107/S1600576715014685
  13. Гражулис С., Шатейнер Д., Даунс Р.Т., Йокочи А.Ф. и др. // Журн. прикл. кристаллографии. 2009. Т. 42. № 4. С. 726. https://doi.org/10.1107/S0021889809016690
  14. Harris I.R., Raynor G.V. // J. Less-Common Met. 1969. V. 17. P. 336. https://doi.org/10.1016/0022-5088(69)90154-4
  15. Wyckoff R.W.G. Crystal Structures. New York: Interscience Publishers, 1963. V. 1. P. 239.
  16. Бочкарев М.Н., Логунов А.А., Бурин М.Е. // Изв. АН. Сер. хим. 2007. С. 1887 (Bochkarev M.N., Logunov A.A., Burin M.E. // Russ. Chem. Bull. Int. Ed. V. 56. P. 1953). https://doi.org/10.1007/s11172-007-0303-x

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Experimental diffraction pattern of a polycrystalline sample of [TmIN] (1); calculated diffraction patterns of TmH2 hydride (2), TmN nitride (3), and metallic Tm (4).

Baixar (174KB)
3. Fig. 2. Photograph (a) and spectrum (b) of the glow of the reaction of Tm with I2.

Baixar (161KB)
4. Fig. 3. Fragment of the experimental diffraction pattern of the polycrystalline sample [TmIN] (1); calculated diffraction patterns of the hydride TmH2 (2) and nitride TmN (3) (the intensity values ​​of all points on the diffraction patterns are increased by 15 times).

Baixar (172KB)
5. Scheme 1

Baixar (36KB)
6. Scheme 2

Baixar (30KB)

Declaração de direitos autorais © Российская академия наук, 2025