Hemispheric Differences in the Connections Between EEG Rhythms During Full and Incomplete Awakening

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A.R. Luria’s theory describes a structural and functional block that regulates the sleep–wake cycle and is involved in the awakening process. However, the features of interhemispheric asymmetry during awakening from different sleep phases remain insufficiently studied. There are practically no works on the EEG rhythms coupling during the restoration of activity immediately after awakening. Identification of differences in the functioning of the cerebral hemispheres (within the framework of A.R. Luria’s theory) upon awakening with varying efficiency of restoration of psychomotor activity. Identification of the connectivity of simultaneously functioning brain structures in 1 block according to A.R. Luria. Data from 15 of 83 participants who completed the entire study procedure were used for the analysis. Multichannel EEG was recorded in parallel with the bimanual psychomotor test. The power characteristics of the EEG were assessed based on the “mother” complex Morlet wavelet. The Kendall correlation coefficient served as a measure of the amplitude-amplitude interaction of EEG rhythms. Complete awakening is characterized by the presence of asymmetrical connections of EEG rhythms in both hemispheres. Incomplete awakening is accompanied by rhythmic connections in the left hemisphere only. The asymmetry of EEG rhythm coupling is observed in the frontal and temporal regions of the left hemisphere and in the frontal regions of the right hemisphere only during complete awakening. With incomplete awakening — in almost all areas of the left hemisphere. The performance of the psychomotor test is characterized by different efficiency of activity recovery after sleep, and different levels of efficiency are characterized by differences in the functioning of the hemispheres according to the EEG rhythm coupling. Connections between EEG rhythms were identified, on the basis of which an assumption was made about the coupled work of the thalamocortical and cortico-hippocampal systems within the 1 block according to A.R. Luria. Both types of awakening were characterized by the participation of all structural and functional blocks according to A.R. Luria, differing in the hemispheres depending on the type of awakening. Complete and incomplete awakenings are characterized not only by a different set of asymmetric EEG rhythm connections in the hemispheres, but also by their localization.

Full Text

Restricted Access

About the authors

I. A. Yakovenko

Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences

Author for correspondence.
Email: irinayakovenko@mail.ru

Senior Researcher, PhD (in Biology)

Russian Federation, 117485, Moscow, Butlerov St., 5А

N. E. Petrenko

Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences

Email: ivnd@mail.ru

Researcher, PhD (in Biology)

Russian Federation, 117485, Moscow, Butlerov St., 5А

E. A. Cheremushkin

Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences

Email: ivnd@mail.ru

Senior Researcher, PhD (in Biology)

Russian Federation, 117485, Moscow, Butlerov St., 5А

E. O. Gandina

Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences

Email: gandina.e@ihna.ru

Junior Researcher

Russian Federation, 117485, Moscow, Butlerov St., 5А

V. B. Dorokhov

Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences

Email: vbdorokhov@mail.ru

Chief Researcher, Head of the Laboratory

Russian Federation, 117485, Moscow, Butlerov St., 5А

References

  1. Danilova N.N., Bykova N.B., Anisimov N.V., Pirogov Ju.A., Sokolov E.N. Gamma-ritm jelektricheskoj aktivnosti mozga cheloveka v sensornom kodirovanii. Biomedicinskie tehnologii i radiojelektronika. 2002. № 3. P. 34–41. (In Russian)
  2. Doskin V.A., Lavrent’eva N.A., Miroshnikov M.P., Sharaj V.B. Test differencirovannoj samoocenki funkcional’nogo sostojanija. Voprosy psihologii. 1973. V. 19. № 6. P. 141–145. (In Russian)
  3. Lurija A.R. Osnovy nejropsihologii. M.: Izdatel’stvo Moskovskogo Universiteta, 1973. 374 p. (In Russian)
  4. Manjuhina V.O., Tomyshev A.S., Kaleda V.G., Lebedeva I.S. Strukturnye osobennosti talamo-kortikal’noj sistemy i spektral’nye harakteristiki al’fa-ritma u psihicheski zdorovyh ljudej i bol’nyh shizofreniej. Fiziologija cheloveka. 2020. V. 46. № 6. P. 50–59. DOI: https://doi.org/10.31857/S0131164620050082 (In Russian)
  5. Cheremushkin E.A., Petrenko N.E., Dorohov V.B. Son i nejrofiziologicheskie korreljaty aktivacii soznanija pri probuzhdenii. Zhurnal nevrologii i psihiatrii im. S.S. Korsakova. 2021. V. 121. № 4 (2). P. 14–18. DOI: https://doi.org/10.17116/jnevro202112104214 (In Russian)
  6. Balkin T.J., Braun A.R., Wesensten N.J., Jeffries K., Varga M., Baldwin P., Belenky G., Herscovitch P. The process of awakening: a PET study of regional brain activity patterns mediating the re‐establishment of alertness and consciousness. Brain. 2002.V. 125. № 10. P. 2308–2319. DOI: https://doi.org/10.1093/brain/awf228
  7. Bertini M., Violani C., Zoccolotti P., Antonelli A., Di Stefano L. Right cerebral activation in REM sleep: evidence from a unilateral tactile recognition test. Psychophysiology. 1984. V. 21. № 4. P. 418–423. DOI: https://doi.org/10.1111/j.1469–8986.1984.tb00219.x
  8. Bódizs R., Gombos F., Ujma P.P., Szakadat S. The hemispheric lateralization of sleep spindles in humans. Sleep Spindles & Cortical Up States. 2017. V. 1. № 1. P. 42–54. DOI: https://doi.org/10.1556/2059.01.2017.002
  9. Casagrande M., Bertini M. Laterality of sleep onset process: which hemisphere goes to sleep first? Biol. Psychol. 2008. № 77. P. 76–80. DOI: https://doi.org/10.1016/j.biopsycho.2007.09.007
  10. Doesburg S.M., Green J.J., McDonald J.J., Ward L.M. Rhythms of consciousness: binocular rivalry reveals large-scale oscillatory network dynamics mediating visual perception. PLoS One. 2009. V. 4. № 7. e6142. DOI: https://doi.org/10.1371/journal.pone.0006142
  11. Doo-Heum P., Chul-Jin S. Asymmetrical electroencephalographic change of human brain during sleep onset period. Psychiatry Investigation. 2017. V. 14. № 6. Р. 839–843. DOI: https://doi.org/10.4306/pi.2017.14.6.839
  12. Dorokhov V.B. Alpha bursts and K-complex: phasic activation pattern during spontaneous recovery of correct psychomotor performance at different stages of drowsiness. Zhurn. Vyssh. Nerv. Deiat. im. I.P. Pavlova. 2003. V. 53. № 4. P. 503–512.
  13. Faber J., Novak M. Thalamo-cortical reverberation in the brain produces alpha and delta rhythms as iterative convergence of fuzzy cognition in an uncertain environment. Neural Network World. 2011. V. 21. № 2. Р. 169–192. DOI: https://doi.org/10.14311/NNW.2011.21.011
  14. Harmony T. The functional significance of delta oscillations in cognitive processing. Front Integr Neurosci. 2013. V. 7. Art. 83. DOI: https://doi.org/10.3389/fnint.2013.00083
  15. Horton C.L. Consciousness across sleep and wake: discontinuity and continuity of memory experiences as a reflection of consolidation processes. Front Psychiatry 2017. V. 8. Art. 159. DOI: https://doi.org/10.3389/fpsyt.2017.00159
  16. Knyazev G.G., Savostyanov A.N, Bocharov A.V., Tamozhnikov S.S., Kozlova E.A., Leto I.V., Slobodskaya H.R. Cross-Frequency Coupling in Developmental Perspective. Front Hum Neurosci. 2019. V. 13. Art. 158. DOI: https://doi.org/10.3389/fnhum.2019.00158
  17. Liu C.C., Chien J.H., Kim J.H., Chuang Y.F., Cheng D.T., Anderson W.S., Lenz F.A. Cross-frequency coupling in deep brain structures upon processing the painful sensory inputs. Neuroscience. 2015. V. 10. № 303. P. 412–421. DOI: https://doi.org/10.1016/j.neuroscience.2015.07. 010
  18. Miley A.Å., Kecklund G., Åkerstedt T. Comparing two versions of the Karolinska Sleepiness Scale (KSS). Sleep and Biological Rhythms. 2016. V. 14. № 3. P. 257–260. DOI: 10.1007/s41105-016-0048-8' target='_blank'>https://doi: 10.1007/s41105-016-0048-8
  19. Morillas-Romero A., Tortella-Feliu M., Bornas X., Putman P. Spontaneous EEG theta/beta ratio and delta–beta coupling in relation to attentional network functioning and self-reported attentional control. Cognitive Affective & Behavioral Neuroscience. 2015. V. 15. № 3. P. 598–606. DOI: https://doi.org/10.3758/s13415-015-0351-x
  20. Morin C.M. Insomnia, psychological assessment and management. New York: Guilford Press, 1993. 238 p. DOI: 10.1192/s0007125000075401' target='_blank'>https://doi: 10.1192/s0007125000075401
  21. Rutherford H.J.V., Guo X.M., Wu J., Graber K.M., Hayes N.J., Pelphrey K.A., Mayes L. Intranasal oxytocin decreases cross-frequency coupling of neural oscillations at rest. Int. Journ. Psychophysiol. 2018. V. 123. P. 143–151. DOI: https://doi.org/10.1016/j.ijpsycho.2017.09.017
  22. Saadatmehr B., Edalati M., Routier L., Mahmoudzadeh M., Safaie J., Kongolo G., Ghostine G., Wallois F., Moghimi S. Evolution of cross-frequency coupling between endogenous oscillations over the temporal cortex in very premature neonates. Cereb. Cortex. 2022. V. 33. № 2. P. 278–289. DOI: https://doi.org/10.1093/cercor/bhac067.
  23. Samiee S., Vuvan D., Florin E., Albouy P., Peretz I., Baillet S. Cross-frequency brain network dynamics support pitch change detection affiliations expand. The Journal of Neuroscience. 2022. V. 42. № 18. Р. 3823–3835. DOI: https://doi.org/10.1523/JNEUROSCI.0630-21.2022
  24. Steriade M. Grouping of brain rhythms in cortico thalamic systems. Neuroscience. 2006. V. 137. № 4. P. 1087–1106. DOI: https:// doi: 10.1016/j.neuroscience.2005. 10.029
  25. Tamaki M., Bang J.W., Watanabe T., Sasaki Y. Night watch in one brain hemisphere during sleep associated with the first-night effect in humans. Curr. Biol. 2016. V. 26. № 9. P. 1190–1194. DOI: https://doi.org/10.1016/ j.cub.2016.02.063
  26. Trotti L.M. Waking up is the hardest thing I do all day: Sleep inertia and sleep drunkenness. Sleep Med. Rev. 2017. V. 35. P. 76–84. DOI: https://doi.org/10.1016/j.smrv.2016.08.005
  27. Wang B., Yang L., Yan W., An W., Xiang J., Li D. Brain asymmetry: a novel perspective on hemispheric network. Brain Science Advances. 2023. V. 9. № 2. Р. 56–77. DOI: https://doi.org/10.26599/BSA.2023.9050014
  28. Windt J.M. Consciousness in sleep: How findings from sleep and dream research challenge our understanding of sleep, waking, and consciousness. Philosophy Compass. 2020. e12661. P. 1–16. DOI: https://doi.org/10.1111/phc3.12661
  29. Vallat R., Meunier D., Nicolas A., Ruby P. Hard to wake up? The cerebral correlates of sleep inertia assessed using combined behavioral, EEG and fMRI measures. Neuroimage. 2019. V. 184. P. 266–278. DOI: https://doi.org/10.1016/j.neuroimage.2018.09.033
  30. Yang L., Leung H., Plank M., Snider J., Poizner H. EEG activity during movement planning encodes upcoming peak speed and acceleration and improves the accuracy in predicting hand kinematics. IEEE J Biomed Health Inform. 2015. V. 19. № 1. Р. 22–28. DOI: https://doi.org/10.1109/JBHI.2014.2327635
  31. Zaepffel M., Trachel R., Kilavik B.E., Brochier T. Modulations of EEG Beta Power during Planning and Execution of Grasping Movements. PLoS One. 2013. V. 8. № 3. e60060. DOI: https://doi.org/10.1371/journal.pone.0060060

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Map-scheme of distribution of cases of asymmetry and symmetry of EEG rhythm connections during full awakening

Download (75KB)
3. Fig. 2. Map-scheme of distribution of cases of asymmetry and symmetry of EEG rhythm connections during incomplete awakening

Download (77KB)

Copyright (c) 2024 Russian Academy of Sciences