Equations of Multimoment Hydrodynamics in the Problem of Flowing Around a Sphere. 1. Construction of Asymmetric Distributions of Hydrodynamic Values
- 作者: Lebed I.V.1
-
隶属关系:
- Institute of Applied Mechanics of the Russian Academy of Sciences
- 期: 卷 44, 编号 6 (2025)
- 页面: 86-96
- 栏目: Dynamics of transport processes
- URL: https://ruspoj.com/0207-401X/article/view/686553
- DOI: https://doi.org/10.31857/S0207401X25060073
- ID: 686553
如何引用文章
详细
The equations of multimoment hydrodynamics are used to interpret flows behind the sphere that do not have axial symmetry. The equations of multimoment hydrodynamics follow from the equations for pair distribution functions. The derivation of the equations is free from approximations similar to the Boltzmann hypothesis. In accordance with the general approach, the pair function is represented as an infinite series of products of trajectory invariants with unknown coefficients. A finite number of terms are preserved in this series, which make it possible to construct asymmetric distributions of hydrodynamic values. Analytical expressions for the principal hydrodynamic values are presented. Solutions of nonlinear differential equations for unknown coefficients will make it possible to trace the evolution of the observed asymmetric flows, culminating in pronounced turbulence.
全文:

作者简介
I. Lebed
Institute of Applied Mechanics of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: lebed-ivl@yandex.ru
俄罗斯联邦, Moscow
参考
- L.G. Loitsyanskii. Mechanics of Liquids and Gases. Oxford: Pergamon, 1966.
- Mikhalkin V.N., Sumskoi S.I., Tereza A.M. et al. // Russ. J. Phys. Chem. B 2022. V. 16. P. 629.
- Lebed I.V., Umanskii S.Y. // Russ. J. Phys. Chem. B. 2007. V. 1. P. 52. https://doi.org/10.1134/S1990793107010071
- I.V. Lebed. The Foundations of Multimoment Hydrodynamics. Part 1: Ideas, Methods and Equations. N-Y: Nova Science Publishers, 2018.
- Lebed I.V. // Chem. Phys. Lett. 1990. V. 165. № 1-2. P. 226, https://doi.org/10.1016/0009-2614(90)85433-D
- Lebed I.V. // Physica A. 2019. V. 515. P. 715. https://doi.org/10.1016/j.physa.2018.09.166
- Lebed I.V. // Physica A. 2019. V. 524. P. 325. https://doi.org/10.1016/j.physa.2019.04.086
- Lebed I.V. // Chem. Phys. Rep. 1997. V. 16. P. 1263.
- Lebed I.V. // Russ. J. Phys. Chem. B. 2014. V. 8. P. 240. https://doi.org/10.1134/S1990793114020171
- Kiselev A.Ph., Lebed I.V. // Chaos, Solitons, Fractals. 2021. V. 142. №110491, http:// doi.org/10.1016/j.chaos.2020.110491
- Lebed I.V. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 370. http:// doi.org/10.1134/S199079312202018X
- Lebed I.V. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 1194. https://doi.org/10.1134/S1990793123050056
- Lebed I.V. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 1414. https://doi.org/10.1134/S1990793123060179
- Lebed I.V. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 1296. https://doi.org/10.1134/S1990793124700957
- Lebed I.V. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 1405. https://doi.org/10.1134/S1990793124700969
补充文件
